APR 13, 2016 02:41 PM PDT

Turning Lymphocytes Into Rapidly Dividing Attack Cells

WRITTEN BY: Kara Marker
A new hope for vaccine development and cancer therapy has been identified, and it is a signaling protein called c-Myc that plays a regulatory role in the production of daughter cells in the immune system.
 
Asymmetric cell division produces two cell types rather than two identical daughter cells. When this happens, both effector T cells and memory T cells can be produced during cell division. Both of these lymphocytes are important in the fight against invading pathogens.
 
Effector T cells are like armed warriors recruited by the immune system to attack and kill bacteria and viruses. These lymphocytes divide quickly and differentiate further into subtypes specifically designed to kill certain pathogens. Memory T cells are essentially a whole new species, dividing slowly and serving to maintain long-term protection from ongoing infections.
 
T cells fate is influenced by the expression c-Myc protein (green)

In a new study from the St. Jude Children’s Research Hospital, published in Nature, scientists discovered for the first time the link between asymmetric cell division and c-Myc signaling protein. After looking at both cells in culture and in mice, they saw accumulation of c-Myc in the asymmetrically dividing cells, prompting the rapid proliferation of effector T cells like a “shot of caffeine.”
 
"Activated T cells divide every four to six hours. There is no other cell in adults that can divide that fast, not even cancer cells,” said corresponding author Douglas Green, PhD, St. Jude Department of Immunology chair.
 
Mice with decreased levels of c-Myc, on the other hand, had a larger population of memory T cells, an immunological army helpful for the onset of a much later infection but not for an immediate attack.
 
Playing a pivotal role in cell growth, differentiation, and apoptotic death in tissues all over the body, c-Myc is a crucial regulator of cell division. The scientists from this study saw mutations in c-Myc leading to metabolic changes after T cells were activated, which soon led them to believe that learning to control c-Myc could be beneficial to human health The regulation surrounding asymmetric cell division seems to be in the form of a positive feedback loop, and the St. Jude’s scientists believe that manipulation of the metabolic and signaling pathways that lead to c-Myc production could help with vaccine and immunotherapy production for treating cancer.
 
"While daughter cells of activated T cells seem to have very different fates, we showed their behavior could be altered by manipulating these metabolic and regulatory pathways to increase or decrease c-Myc levels." Green said.
 
 
Source: St. Jude Children’s Research Hospital, ImmunoBiology
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
JUN 13, 2018
Immunology
JUN 13, 2018
Vitamin A Gives Immune System Power to Fight Tuberculosis
Multidrug-resistant tuberculosis bacteria are a serious health concern for the global population, but a new finding offers a new therapeutic solution that...
AUG 04, 2018
Microbiology
AUG 04, 2018
The Viral Link to Irritable Bowel Disease
We now know of the importance of the microbiome, but most of the research focus has been on bacteria....
AUG 17, 2018
Health & Medicine
AUG 17, 2018
Is Influenza Different in Obese Patients?
There are many health risks for obese patients. Cardiovascular disease, diabetes and even some forms of cancer. The immune system can be disrupted when a p...
AUG 27, 2018
Cell & Molecular Biology
AUG 27, 2018
Stopping Cell Suicide
Chronic inflammation has been linked to many diseases and can trigger cell death....
AUG 29, 2018
Immunology
AUG 29, 2018
Artificial Intelligence Predicts Response to Immunotherapy
Artificial intelligence can process CT scan images to determine biological and clinical information that can predict immunotherapy efficacy thanks to machine learning....
SEP 11, 2018
Immunology
SEP 11, 2018
Oops! I Broke My DNA
Innate Immune System, DNA Damage and Repair...
Loading Comments...