MAY 11, 2016 5:00 AM PDT

Drug calms immune system after brain injuries

Scientists are testing a new drug that could minimize the risk of life-threatening infections in patients with traumatic brain injuries.
 
"If our findings can be translated into humans this could be life-changing for patients with head injuries," says Claire Harris.

The infections, as well as brain inflammation, are the result of the body’s natural disease-fighting immune response, called “complement.”

“When tissue is injured in an accident, this part of our immune system sees the tissue as ‘foreign’ and responds in an inappropriate way to make the damage even worse,” says Claire Harris, a professor from Cardiff University’s Institute of Infection and Immunity, who led the research.

Harris and colleagues have engineered a new duel “homing” agent that, when given to mice, inactivated the complement system in the brain, reduced inflammation, and aided recovery.

“Widespread blocking of this part of the immune system after traumatic brain injury helps damaged brain tissue to survive and improves neurological recovery in mice. Unfortunately, this treatment approach could be harmful to humans because complement is essential for fighting infections—that’s why this homing agent is so significant.

“We have engineered a drug that combines two different activities in one molecule. One arm ‘targets’ the drug to the site of tissue damage, thus concentrating the therapy exactly where it is most needed, and the second arm (CD59) inhibits a specific part of the complement system that would drive further damage if left unchecked.

“This drug therefore delivers therapy to where it is needed, freeing up the complement system to fight infection in the rest of the body.”

The study, published in the Proceedings of the National Academy of Sciences, showed that when the homing agent was injected into mice immediately after traumatic brain injury, it specifically targeted the injured tissue, serving to inactivate the complement system and reduce inflammation and neuronal damage.

“Development of this new homing agent is exciting. We’ve shown that it can be administered in mice some time after the trauma and still be effective,” says Harris. “If our findings can be translated into humans this could be life-changing for patients with head injuries.”

Source: Cardiff University

This article was originally published on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
SEP 15, 2019
Immunology
SEP 15, 2019
New Observations of a Cancer Transcriptase
New research shows a transcriptase that helps time cell death varies in expression, and is unusually localized, in cancer cells.  The transcriptase, T...
OCT 29, 2019
Microbiology
OCT 29, 2019
Antibody Discovered That May be the Key to a Universal Flu Vaccine
Instead of designing a new flu vaccine every year, researchers have made a breakthrough that may lead to a single vaccine that protects against all strains....
NOV 08, 2019
Microbiology
NOV 08, 2019
Measles Can Wipe Out the Memory of the Immune System
Researchers have learned how the measles vaccine can provide an additional layer of protection against more than just the measles....
NOV 19, 2019
Microbiology
NOV 19, 2019
Ketogenic Diet Appears to Help Protect Against the Flu
The ketogenic diet forces the body to use stored fat as fuel instead of carbohydrates; the fat gets broken down into ketone bodies....
DEC 11, 2019
Drug Discovery & Development
DEC 11, 2019
Drug To Treat Ulcerative Colitis
Biomedical researchers at the University of California—Riverside, found that the therapeutic drug ‘tofacitinib’ used in treating autoimmu...
JAN 07, 2020
Immunology
JAN 07, 2020
"Good" T Cells Can Go "Bad," But in the Case of Cancer, That's A Good Thing
T cells may be able to reach their full potential in the fight against cancer with a little nudge. In 2010, scientists first observed CD4+ T cells transiti...
Loading Comments...