JUN 08, 2016 11:42 AM PDT

Newly Found NK Cell Memory For Treating Melanoma

WRITTEN BY: Kara Marker
B cells and T cells are not the only immune cells with memory capabilities, scientists have discovered. Natural Killer (NK) cells have been shown to remember certain pigmented cells, and researchers from a new study are learning to harness NK cell memory to develop new treatments for malignant melanoma.
 
 Melanoma on the skin. Image credit: National Cancer Institute
 
NK cells are a part of the innate, non-specific immune system that responds first to invading pathogens and abnormal cell growth. NK cells can recognize and kill abnormally growing cells, making them a prime target for evasion by cancerous cells.
 
Pigmented skin cells offer protection from ultraviolet radiation, like rays from the sun. When a person spends time tanning their skin to achieve a certain skin color, an enzyme called tyrosinase forms inside pigmented cells from the ultraviolet ray exposure from sunshine.
 
Malignant melanoma, the most dangerous form of skin cancer, can occur when ultraviolet radiation, like the rays that make skin a tan color, damages DNA and cells continue to divide without repairing the damage. Rapid cell division of these damaged cells leads to the formation of malignant tumors. NK cells are specifically designed to kill these types of cells, but sometimes cancer finds a way to evade detection. In a new study published in Immunity, researchers from the University of Bonn and the Ludwig-Maximilians-Universitat of Munich devised a clever system for bringing out the memory power of NK cells to target abnormal pigmented skin cells.
 
Dr. van der Boorn, Dr. Hartmann, and Dr. Hornung from the University of Bonn
 
In some cases when tyrosinase forms inside pigmented cells, an organic chemical called monobenzone binds to the enzyme and triggers a stress reaction. The immune system, namely NK cells, is then activated to attack the pigmented cells with monobenzone-tyrosinase pairs. This immune response results in milky-white unpigmented areas on the skin, a disease called vitiligo. People with this skin disease are less likely to develop malignant melanoma due to the enhanced activity of pigmented cell-targeting NK cells, which is exactly the effect the scientists from this study were looking for.
 
The approach developed from all their observations then lead to this plan: triggering vitiligo with low doses of monobenzone to block tyrosinase enzymes, what Dr. Jasper van den Boorn from the University of Bonn considers a “less severe disease as a weapon against malignant melanoma.”
 
An example of vitiligo 
 
The next question the researchers posed was this: how does the immune system recognize the blocking of tyrosinase by monobenzone as a reason to cause disease, but cases of metastatic melanoma often go undetected by the immune system?
 
From conducting experiments with mice, the researchers saw that the interaction between monobenzone and tyrosinase produces a hapten, a small molecule that prompts an immune response when it binds to a specific protein. Next, the NLRP3 inflammasome, an immune checkpoint that activates in order for natural killer cells to be signaled to look for and kill abnormal cells, in this case pigmented cells growing uncontrollably. In mice with a dysfunctional NLRP3 inflammasome, the hapten produced from monobenzone blocking the tyrosinase enzyme did not prompt an immune response.
 
The results from this study provide scientists a new way to approach one of the deadliest types of cancer, as well as learning more about the pathology of vitiligo for people who might want to have their disease cured.
 

 
Sources: University of Bonn, Nature Immunology, Methods in Molecular Medicine, Skin Cancer Foundation
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAR 20, 2020
Neuroscience
MAR 20, 2020
The Little Things Matter: The Mental Impact of Social Distancing
Image: Metropolitian State University of Denver The COVID-19 pandemic has caused social interactions, resources, and mos ...
MAR 11, 2020
Neuroscience
MAR 11, 2020
Categories of Memory Work Together to Form Abstract Thought
Indiana University New research from the University of Trento shows how areas of the brain work to recall complex semant ...
APR 01, 2020
Immunology
APR 01, 2020
New Airway-Hugging Immune Cells Discovered in the Lung
  Scientists have discovered a previously unknown subset of immune cells residing in the lung that specifically com ...
APR 15, 2020
Immunology
APR 15, 2020
Does COVID-19 Attack the Immune System like HIV?
Researchers from the US and China have found that COVID-19 can destroy T cells, a type of lymphocyte that plays a key ro ...
MAY 05, 2020
Immunology
MAY 05, 2020
Winter the Llama: An Unlikely Hero in the Fight Against COVID-19
A new hero in the fight against COVID-19 has emerged: 4-year-old Winter, a llama that currently resides in the Belgian c ...
JUN 15, 2020
Drug Discovery & Development
JUN 15, 2020
FDA Approves HPV Vaccine to Prevent Throat Cancer
For around a decade, research has suggested that Gardasil, an HPV vaccine, could prevent throat cancer, a condition that ...
Loading Comments...