JUN 14, 2016 12:26 PM PDT

When T Regs Migrate To The Gut and Never Return

WRITTEN BY: Kara Marker
Scientists learn more everyday about the complex and unique population of microbes in the human gastrointestinal (GI) tract. While these “good bacteria” serve a variety of beneficial functions for the gut like helping facilitate digestion, any dislocation of these bacteria into the bloodstream could cause infection elsewhere in the body that isn’t equipped to peacefully coexist with the microbiota. To prevent systemic infection from occurring, there is a thin layer of cells that provides a barrier between the microbiota and the rest of the body. A new study from The Rockefeller University investigates the content of this layer and how the body maintains a healthy population of gut bacteria without infecting the rest of the body.
Tregs (red) below the barrier layer of the gut  
You fall and scrape your knee, or you catch a nasty cold from someone on the bus. Instantly, your immune system is responding to the damage, with the first response almost always being inflammation: a rush of blood, carrying lymphocytes, to the site of injury or infection. There is also a component of the immune system that serves to make sure inflammatory cells don’t get carried away: regulatory T cells.
 
After examining the barrier layer of the GI tract, scientists found a surprising lack of regulatory T cells (Tregs), the lymphocyte population that is known for mediating the immune response throughout the body. Instead, they found intraepithelial (IEL) CD4 cells. However, they weren’t so sure that Tregs still weren’t involved, and further studies indeed showed a connection between IEL CD4 cells and Tregs.
 
IEL cells are also found in other epithelial cells of the body: skin, biliary tract, oral cavity, upper respiratory tract, lungs, and the reproductive tract. These lymphocytes are some of the most diverse of the body’s lymphocyte populations.
 
Researchers from the current study, published in Science, discovered that the IEL CD4 cells they found in the barrier layer of the GI tract were descendants of Tregs that had first populated the gut lining. To figure out how the lymphocytes made the transition into IEL CD4 cells, the team started tracking Tregs as they made the trip to the GI tract.
 
Over five weeks, they saw half of the labeled Tregs that traveled to the gut lining eventually stopped expressing a protein called Foxp3. The gene that encodes this protein is a transcriptional regulator whose defects have been related to disorders like immunodeficiency polyendocrinopathy, enteropathy, and X-linked syndrome. Of the Tregs not expressing Foxp3, a fraction transformed into IEL CD4 cells, making the Rockefeller scientists the first to record the transformation of Tregs into another cell type in a living organism.
 
This discovery also provides a generous piece of the puzzle for scientists who study the diversity of the microbiome and how reducing certain populations can be harmful to human health. Mice studies from the same researchers show a response from the gut bacteria to the Treg conversion to IEL CD4 cells which seems to have a role in the conversion process. However, with certain antibiotic treatments, the Tregs stopped converting to IEL CD4 cells. How common this response is in human life and how it effects the health of the microbiome, researchers are still unsure.
 

 
Sources: The Rockefeller University, Gene Cards Human Gene Database, Encyclopedia of Life Sciences
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
APR 28, 2018
Cardiology
APR 28, 2018
Eating Dark Chocolate Reduces Stress, Improves Mood
We’ve heard that dark chocolate is good for us in reasonable amounts, but two unique studies from the Loma Linda University Adventist Health Sciences...
MAY 07, 2018
Immunology
MAY 07, 2018
Breast Milk: An Important Source of Protective Immune Cells
For the first time, scientists have identified innate lymphoid cells (ILCs) among the arsenal of protective cells transferred to newborn babies via breast...
JUL 04, 2018
Drug Discovery
JUL 04, 2018
Discovery of New Properties of an Anti-Tuberculosis Drug
  Investigators at the University of Otago found novel properties of a new anti-tuberculosis drug which may inspire more new drugs to treat tuberculos...
JUL 16, 2018
Immunology
JUL 16, 2018
T cells and the Need for Speed
A recent study has shown that T cell receptors are dispersed across the T cell surface, as opposed to clustered, to allow for a rapid immune reaction....
AUG 22, 2018
Immunology
AUG 22, 2018
Immune Response Runs on the Body Clock
Immune cell functions such as inflammation are dictated by your bodies circadian rhythm, responding daily to external stimuli on a 24 hour schedule....
AUG 31, 2018
Immunology
AUG 31, 2018
B Cells Control Connective Tissue Disorder Scleroderma
Effector and Regulatory B cells play reciprocal role in pathogenesis of scleroderma....
Loading Comments...