JUL 26, 2016 11:02 AM PDT

How a sneaky virus drives cancer cells to grow

As scientists identify ways that viruses exploit their host cells to make more copies of themselves, they are also uncovering clues to how these viral invaders trigger cancerous cell growth.
 

Image Credit: Steve Snodgrass/Flickr

A new study shows how a type of herpesvirus uses mimicry to trick the host cell into producing proteins the virus needs, and to drive cell growth. The findings have implications for how the virus causes cancer, researchers say.

The Kaposi sarcoma-associated herpesvirus makes a protein called vPK that shares a number of similarities to a host cell protein named S6KB1. The virus manipulates the S6KB1 host cell signaling pathway to spur the host cell to make more proteins and divide—even when the host isn’t ready for it. The findings shed light on a potential cancer-causing mechanism of the virus.

“Cancer is a multi-step process, and to turn a normal cell into a cancer cell, a number of events need to occur,” says senior author Blossom Damania, professor of microbiology and immunology at the University of North Carolina at Chapel Hill.

“Some of those steps involve increasing cell proliferation, others involve preventing cell death, and yet others involve the cell evading host immunity.

This process usually requires multiple events that target these different pathways before a cell becomes cancerous. We think that different viral proteins are targeting different cell pathways, and the one we identified in this study is targeting cell protein synthesis and cell growth.”

Kaposi sarcoma-associated herpesvirus is linked to several types of cancer, including Kaposi sarcoma and two types of lymphomas. People who have a weakened immune system, such as transplant recipients who take immune suppressive drugs or those infected with HIV, are at increased risk of developing Kaposi sarcoma when infected with the virus.
 

Checks and balances


Previous studies have shown that Kaposi sarcoma-associated herpesvirus can make proteins that keep the host cells from triggering its own death, or that prevent warning signals to the body’s defense system in response to the virus.

In the new study, published in the Proceedings of the National Academy of Sciences, researchers used computer modeling to reveal that the viral protein vPK is structurally similar to a host protein. They also used other biochemical and molecular methods to determine that the two proteins target similar signals in the cell.

Based on those and other findings, they conclude that the viral protein mimics the human protein’s function, causing the host cell to increase protein production, to divide, and to encourage angiogenesis, a process by which tumors induce blood vessels to fuel them with nutrients.

With such virally-promoted functions relatively unchecked, those functions can contribute to the abnormal cell growth that’s characteristic of cancer.

“This viral protein does not contain the same ‘checks’ that keep the cellular protein in line, so it can perform this function without being controlled by the brakes the cell normally uses to control activity of the cellular protein,” Damania says. “So essentially, the viral protein can function unregulated, and hence, might contribute to the development of cancers associated with this virus by augmenting cell proliferation.”

The findings may also have implications for treatment of viral cancers, says first author Aadra Bhatt, a postdoctoral researcher at UNC Lineberger.

And although the new findings uncovered the similarity between the viral and host protein, researchers speculate that the virus has been evolving alongside humans and their evolutionary ancestors for millions of years to enable them to commandeer host cell pathways and use the host to their own advantage.

The National Institutes of Health, the American Cancer Society, the Leukemia and Lymphoma Society, and the Burroughs Wellcome Fund supported the work.

Source: UNC-Chapel Hill

This article was originally published on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
APR 03, 2021
Cancer
New factor plays a key role in immune response
APR 03, 2021
New factor plays a key role in immune response
In a study published recently in Science Immunology, WEHI’s Professor Stephen Nutt, Dr. Michael Chopin, and Mr. Sh ...
APR 20, 2021
Immunology
Scientists Map the Genetic Landscape of COVID Infections
APR 20, 2021
Scientists Map the Genetic Landscape of COVID Infections
Scientists have identified 65 human immune genes activated during SARS-CoV-2 infection. This finding provides valuable i ...
APR 19, 2021
Cell & Molecular Biology
Insight Into the Molecular Basis of Rheumatoid Arthritis
APR 19, 2021
Insight Into the Molecular Basis of Rheumatoid Arthritis
New research has shown how variants in an immune gene can lead to a high risk of developing the autoimmune disorder rheu ...
MAY 11, 2021
Genetics & Genomics
Gene Therapy Trial for Severe Immune Disorder is Successful
MAY 11, 2021
Gene Therapy Trial for Severe Immune Disorder is Successful
Severe combined immunodeficiency (SCID), which virtually eliminates a patient's immune system, and severely affects thei ...
MAY 31, 2021
Immunology
Engineering Faster, More Agile T Cell Cancer Fighters
MAY 31, 2021
Engineering Faster, More Agile T Cell Cancer Fighters
Cell therapies use engineered T cells extracted from the patient’s own immune system to rally an attack on tumors. ...
JUN 22, 2021
Immunology
The Brain's Immune Protectors Come from an Unexpected Source: The Skull
JUN 22, 2021
The Brain's Immune Protectors Come from an Unexpected Source: The Skull
The immune system and the nervous system have a love-hate relationship. On one hand, immune protection is critical for s ...
Loading Comments...