AUG 14, 2016 10:24 AM PDT

Tumors use local food shortage against T-cells

Image Credit: Guilhem Vellut/Flickr

The microenvironment that supports a cancerous tumor also starves the immune cells the body sends in to destroy the cancer, scientists report.

The finding holds the potential to significantly boost the performance of breakthrough immunotherapy drugs.

Researchers at the University of Pittsburgh Cancer Institute showed that when immune T cells enter the tumor microenvironment, their mitochondria—which act as mini-factories inside cells, making energy and crucial reagents a cell needs to survive—begin to shrink and disappear, indicating that the T cell is out of fuel and can’t do its tumor-destroying job.

The work, reported in the journal Immunity, opens the door to several potential clinical approaches that could help keep T cells functioning and boost the body’s ability to fight cancer.

“Immunotherapy to stimulate the body’s immune system has increasingly become the way we treat people with aggressive cancers. It’s effective for a subset of patients, but the truth is that only about 20 to 40 percent of patients will respond to the treatment, and it is still unclear why,” says senior author Greg M. Delgoffe, assistant professor of immunology and member of the Tumor Microenvironment Center at UPCI, partner with UPMC CancerCenter.

“It’s a huge question in the cancer immunotherapy field, and we think we’ve found a big part of the answer.”

As tumors grow, they build a microenvironment, which develops its own blood supply and keeps the tumor thriving, protected, and voraciously consuming all available nutrients.

When T cells enter the microenvironment, it’s as if they’re “automobiles that suddenly had the emergency brake applied; they can’t keep driving,” explains Delgoffe. Immunotherapies, like those that target negative regulators on the T cell surface, take these brakes off. “However, what we’re discovering in many cases is that even though the brakes have been taken off, there isn’t any fuel in the tank,” Delgoffe says. Or—in scientific terms—the lack of mitochondria in the tumor-infiltrating T cells keeps them from functioning.

“This is an exciting discovery because we already have various strategies to ‘fill the fuel tank’ and support T cell function in the tumor microenvironment,” says Delgoffe.

In laboratory experiments and tests with mice, Delgoffe and his team found that when they boosted the mitochondria in the T cells, they were better able to clear the tumor.

Delgoffe is partnering with other scientists to test various mitochondria-boosting strategies, including using drugs that already have proven safe in humans, such as those for type 2 diabetes, to stimulate T cell metabolism. He’s also working with existing immunotherapy studies to further modify the T cells so that their metabolism functions better in the tumor microenvironment.

Partial funding came from the Sidney Kimmel Foundation for Cancer Research and the National Institutes of Health.

Source: University of Pittsburgh

This article was originally published on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
JUN 20, 2018
Immunology
JUN 20, 2018
Immune System Accidentally Allows Meningitis Brain Infection
Several immune cells help fungi infect the brain and cause meningitis when they should be doing the exact opposite. From the University of Sydney, research...
JUL 21, 2018
Immunology
JUL 21, 2018
Gut Cells and the Immune System Curriculum
Recent study shows that sensory cells native to the gut are found in Hassall's corpuscles in the thymus, these are shown to play a role in the education of T cells in self vs. non-self....
JUL 23, 2018
Immunology
JUL 23, 2018
Obesity Associated Inflammation Leads to Chronic Health Issues
Inflammation caused by harmful oxidized lipids increases in individuals with obesity and may contribute to chronic disease development....
AUG 10, 2018
Immunology
AUG 10, 2018
Cancer Cell 'Drones' Battle Immune System
Cancer cells release PD-L1 containing exosomes that circulate in the blood and stop T cells before they can reach tumors....
AUG 24, 2018
Cell & Molecular Biology
AUG 24, 2018
Chronic Allergies can Change Cells
Chronic rhinosinusitis is different from allergies; it leads to serious inflammation and swelling in the sinuses that can last for years....
SEP 21, 2018
Immunology
SEP 21, 2018
Intrauterine Protection from Allergy Season
Pregnancies during allergy season may provide protection against allergy development in children...
Loading Comments...