AUG 15, 2016 9:35 AM PDT

Finding The "Sweet Spot" of the Immune System

WRITTEN BY: Kara Marker
In a new study from Oxford University, scientists ask: How does the human immune system rate an attack and decide how strongly to fight back? They describe the T cell response as “impulsive,” meaning that the regulatory cells of the immune system are responsible for dialing back the intensity of the response if necessary. 
The possible solution to controlling the massive T cell response researchers examined in this study is an intricate relationship between T cells and dendritic cells, an intermediate component of the immune system that activates T cell responses to infection through transcription factors.

Scientists believe that the duration of the interaction between T cells and dendritic is responsible for controlling the severity of an immune response, with the dendritic cells facilitating the process of “reading” the situation to determine how serious the infection is. If it’s a weak virus or a small amount of bacteria that has entered the body, the dendritic cells might deliver a minor response. On the other hand, a sizeable, dangerous infection might mean the release of a massive amount of T cells into the bloodstream. Without regulators like dendritic cells, T cells might run rampant even during a minor infection.

“It brings risks of immunopathology, where an overactive immune system destroys healthy human tissue, not just the invading disease-causing pathogen,” said Oxford’s Michael Dustin, PhD. 

The T cell-dendritic cell interaction revolves around the time T cells spend congregating around dendritic cells, as if waiting for a specific call to action. Dendritic cells herd T cells with the help of transcription factors, making T cells less mobile and more likely to group together. In a way, dendritic cells are “rounding up the troops” with transcription factor help, which works by reducing the levels of components T cells need in order to be mobile.

The Oxford scientists saw the dendritic cells react on a situation-by-situation basis, using the transcription factors to influence the growth and metabolism of T cells in accordance with the pathogenic threat at hand, creating just the right size army to fight the infection without hurting healthy cells. The longer the interaction between dendritic cells and T cells, the more severe an infection.

In certain situations, dendritic cells also help prevent the immune response stopping at a threshold, called “saturation.” “Overcoming saturation allows the immune system to keep scaling up its response to meet the demands of severe infection,” said Dr. Viveka Mayya.    

Researchers from the study believe their findings are applicable to a wide variety of future studies on vaccine development, autoimmune disease, and chronic infection. With the right tools and continued research, scientists could soon create many new tools to prevent and/or correct errors made in the immune system that lead to these conditions.
 
This study was recently published in the journal Trends in Immunology.
 


Source: University of Oxford
Image: www1.imperial.ac.uk 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
SEP 11, 2019
Cardiology
SEP 11, 2019
Better Sleep, Brought To You By Exercise
Regular difficulty falling or staying asleep, called chronic insomnia, is the most common sleep disorder among adults. In the search for better, more restf...
OCT 19, 2019
Neuroscience
OCT 19, 2019
Autism May be Linked to an Immune Disorder
Until now, diagnosis for autism spectrum disorder have relied on behavioral assessments looking for symptoms including poor social and communication skills...
OCT 21, 2019
Drug Discovery & Development
OCT 21, 2019
Effective Vaccines for Lyme Disease?
Currently, there are no effective vaccines available for the presentation of Lyme disease. The only preventive efforts present includes “guiding&rdqu...
OCT 29, 2019
Immunology
OCT 29, 2019
Immune Protein Prevents Herpes Spreading to the Brain
An immune protein that was discovered more than two decades ago has been identified as the primary component of a molecular blockade that prevents genital ...
DEC 21, 2019
Drug Discovery & Development
DEC 21, 2019
Improving Vaccines for Meningitis
Scientists at the University of Nottingham are seeking new ways to improve vaccine use in the protection against the bacterium, Neisseria meningitides that...
FEB 21, 2020
Drug Discovery & Development
FEB 21, 2020
Why is it so Difficult to Develop a Vaccine for Coronavirus?
As of February 21st, 2,250 have died worldwide from Coronavirus, while 18,862 have recovered and 55,703 are currently infected. Having made top news storie...
Loading Comments...