MAR 17, 2015 10:33 AM PDT

Researchers Unlock the Mysteries of Wound Healing

Researchers at the University of Arizona have discovered what causes and regulates collective cell migration, one of the most universal but least understood biological processes in all living organisms.

The findings, published in Nature Communications, shed light on the mechanisms of cell migration, particularly in the wound-healing process. The results represent a major advancement for regenerative medicine, in which biomedical engineers and other researchers manipulate cells' form and function to create new tissues, and even organs, to repair, restore or replace those damaged by injury or disease.

"The results significantly increase our understanding of how tissue regeneration is regulated and advance our ability to guide these processes," said Pak Kin Wong, associate professor in the Department of Aerospace and Mechanical Engineering in the UA College of Engineering and lead investigator of the research.

"In recent years, researchers have gained a better understanding of the molecular machinery of cell migration, but not what directs it to happen in the first place," he said. "What, exactly, is orchestrating this system common to all living organisms?"

Leaders of the Pack

The answer, it turns out, involves delicate interactions between biomechanical stress, or force, which living cells exert on one another, and biochemical signaling.

The UA researchers discovered that when mechanical force disappears - for example at a wound site where cells have been destroyed, leaving empty, cell-free space - a protein molecule, known as DII4, coordinates nearby cells to migrate to a wound site and collectively cover it with new tissue. What's more, they found, this process causes identical cells to specialize into leader and follower cells. Researchers had previously assumed leader cells formed randomly.

Wong's team observed that when cells collectively migrate toward a wound, leader cells expressing a form of messenger RNA, or mRNA, genetic code specific to the DII4 protein emerge at the front of the pack, or migrating tip. The leader cells, in turn, send signals to follower cells, which do not express the genetic messenger. This elaborate autoregulatory system remains activated until new tissue has covered a wound.

The same migration processes for wound healing and tissue development also apply to cancer spreading, the researchers noted. The combination of mechanical force and genetic signaling stimulates cancer cells to collectively migrate and invade healthy tissue.

Biologists have known of the existence of leader cells and the DII4 protein for some years and have suspected they might be important in collective cell migration. But precisely how leader cells formed, what controlled their behavior, and their genetic makeup were all mysteries - until now.

Broad Medical Applications

"Knowing the genetic makeup of leader cells and understanding their formation and behavior gives us the ability to alter cell migration," Wong said.

With this new knowledge, researchers can re-create, at the cellular and molecular levels, the chain of events that brings about the formation of human tissue. Bioengineers now have the information they need to direct normal cells to heal damaged tissue, or prevent cancer cells from invading healthy tissue.

The UA team's findings have major implications for people with a variety of diseases and conditions. For example, the discoveries may lead to better treatments for non-healing diabetic wounds, the No. 1 cause of lower limb amputations in the United States; for plaque buildup in arteries, a major cause of heart disease; and for slowing or even stopping the spread of cancer, which is what makes it so deadly.

The research also has the potential to speed up development of bioengineered tissues and organs that can be successfully transplanted in humans.

About the Study

In the UA Systematic Bioengineering Laboratory, which Wong directs, researchers used a combination of single-cell gene expression analysis, computational modeling and time-lapse microscopy to track leader cell formation and behavior in vitro in human breast cancer cells and in vivo in mice epithelial cells under a confocal microscope.

Their work included manipulating leader cells through pharmacological, laser and other means to see how they would react.

"Amazingly, when we directed a laser at individual leader cells and destroyed them, new ones quickly emerged at the migrating tip to take their place," said Wong, who likened the mysteries of cell migration and leader cell formation to the processes in nature that cause geese to fly in V-formation or ants to build a colony.

Source: University of Arizona
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
MAY 24, 2018
Immunology
MAY 24, 2018
The Link Between Tuberculosis and Parkinson Disease
There might be a link between Tuberculosis (TB) and Parkinson’s according to a study published in The EMBO Journal. This link is related to the mecha...
MAY 24, 2018
Immunology
MAY 24, 2018
Brain and Gut Link in Multiple Sclerosis
Scientists have discovered a new molecular pathway connecting brain and gut that if learned how to control, may be able to treat Multiple Sclerosis and oth...
JUN 01, 2018
Immunology
JUN 01, 2018
How does estrogen increase the risk of autoimmunity for women?
The unique activity of estrogen hormones and their cell receptors in the female body may explain why women are more likely than men to develop autoimmune d...
JUN 25, 2018
Immunology
JUN 25, 2018
An Emerging Chronic Food Allergy: Eosinophilic Esophagitis
There’s a new food allergy in town, and it seems that children with existing allergies at an increased risk of developing it. From the Children&rsquo...
AUG 06, 2018
Immunology
AUG 06, 2018
Maternal Dengue Immunity Protects Against Infant Zika Infection
Maternal Dengue immunity produces CD8+ T cells that protect against fetal Zika infection preventing zika-related malformations....
SEP 04, 2018
Immunology
SEP 04, 2018
Development of Damaging Immune Cells in Tuberculosis Infection
Development of damaging white blood cells occurs during Tuberculosis infection leading to a maladaptive immune response....
Loading Comments...