MAR 21, 2017 9:53 AM PDT

Temporarily Muting Immune Regulation Focuses Attention on Cancer

WRITTEN BY: Kara Marker

The same immune process that protects the immune system from friendly fire by soothing inflammatory reactions and reducing numbers of “fighter” immune cells ironically ends up backfiring in many cases of cancer. A new way to kill tumor cells involves temporarily inhibiting this protective mechanism, so all hands are on deck.

Cancer cells in tissue culture from human connective tissue, illuminated by darkfield amplified contrast, at a magnification of 500x. Source: National Cancer Institute

Regulatory T cells, or Tregs, are designed to inhibit the immune response when an infection is under control or when the body mistakenly targets its own cells, preventing excessive inflammation and autoimmune diseases. However, Tregs also unknowingly prevent the immune system from using its full potential in the attack against cancer, and tumor cells take advantage of this error.

Cancer cells “learned” to manipulate the immune system’s set-in-place mechanism for keeping the inflammatory response in check by producing a cytokine called transforming growth factor-beta, or TGF-beta. Releasing this cytokine promotes an influx of Tregs into the tumor microenvironment, where the cancer cells can multiply and spread in peace with the blind protection of Tregs in place.

While not forgetting that some level of Treg activity is important for the prevention of autoimmune diseases and chronic inflammation, researchers from the Medical University of South Carolina (MUSC) brainstormed ways to prevent cancer cells from recruiting Tregs for their own agenda of proliferating and spreading to different parts of the body. Their investigation led them to a protein called moesin, which controls both Treg function and TGF-beta levels and activity.

"Because moesin supports greater Treg production, we could design moesin inhibitors to halt or slow active TGF-beta signaling and slow down Treg conversion so that anti-tumor T cells can have a chance to see the cancer and eradicate it," explained the senior author of the new study, Zihai Li, MD, PhD.

Li and the other researchers did not need to hinder Treg activity indefinitely, just long enough for fighter immune cells to identify abnormally growing cells as cancerous and launch an attack against them. What does this discovery mean? Maybe a new target for cancer immunotherapy.

They applied their idea in a mouse model of melanoma alongside an existing experimental treatment called adopted T cell therapy. This approach involves taking fighter T cells from a cancer patient, “supercharging” them in the lab, and returning them to the patient with the intent of empowering the cells to better fight the cancer. The therapy is effective, but the supercharged cells do not live very long.

However, applying the adopted T cell therapy in models lacking moesin helped the superchargers live longer, fight cancer longer in the body. “We were not only deleting moesin but, when we gave T cells to the active tumors, those T cells could control the cancer for a very long time," explained lead author Ephraim Ansa-Addo, PhD.

Cancer remains an elusive and diverse disease with various subtypes that must be treated as individual diseases, but the new study from MUSC offers a new drug target that can be used alongside other treatments, boosting their effectiveness and long-term success.

The present study was published in the Journal of Clinical Investigation.

Source: Medical University of South Carolina

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
AUG 01, 2019
Cancer
AUG 01, 2019
How cancer tricks our immune systems
Research published yesterday in Nature details the finding of a new “Don’t eat me” signal that cancers use to hide from the body’s ...
AUG 17, 2019
Cell & Molecular Biology
AUG 17, 2019
How Neutrophils are Involved in Gallstone Formation
Gallstones form in the gallbladder, and can be as tiny as a grain of sand or as big as a golf ball....
OCT 29, 2019
Immunology
OCT 29, 2019
Immune Protein Prevents Herpes Spreading to the Brain
An immune protein that was discovered more than two decades ago has been identified as the primary component of a molecular blockade that prevents genital ...
NOV 13, 2019
Health & Medicine
NOV 13, 2019
Antibiotic Resistance by the Numbers
The Centers for Disease Control and Prevention (CDC) just released its latest Antibiotic Threats in the United States report, which is summarized in the vi...
DEC 10, 2019
Immunology
DEC 10, 2019
T Cell Subset Uniquely Equipped to Target IBD
A specialized form of T cell emerges as a new focus for gastrointestinal health research, specifically in the context of inflammatory bowel disease (IBD) f...
JAN 14, 2020
Clinical & Molecular DX
JAN 14, 2020
Can I eat this donut? A quick test for celiac disease.
Genetic testing revealed that our ancestors have been eating wheat, rye, spelt and barley for over 8,000 years. Today, gluten, a protein found within these...
Loading Comments...