SEP 04, 2017 08:00 PM PDT
"Blood and Guts" Study Maps B Cells All Over the Body
WRITTEN BY: Kara Marker
3 3 347

What scientists are calling the B cell “clonal geography” has been the subject of a long project at the University of Pennsylvania School of Medicine. Researchers developed a new computational framework for analyzing the way B cells form networks in different tissues in the body. The framework is called “ImmuneDB.”

A depiction of a B cell, lymphocytes of the adaptive immune system that produce antibodies. Source: Blausen.com staff (2014)

"We dubbed our study 'Blood & Guts,' when we started to see that B-cell clone populations partition into two broad networks,” explained senior author Nina Luning Prak, MD, PhD. “We essentially discovered and mapped the B-cell clonal geography of the human body.”

The two broad networks are those in the gastrointestinal tract and in blood-rich regions: blood, bone marrow, spleen, and lungs. B cells, which produce antibodies, are undeniably vital for immunity and for a healthy microbiome. In response to a pathogenic invasion, B cells go through clonal expansion, where one “parent” cell “gives birth” to an army of identical clones. How the clones move into different tissues and disperse themselves greatly impacts how well the body controls infections.

After analysis, researchers saw that there are more memory B cells in the gut network than in the blood-rich network, and the B cell populations are more related genetically.

"Presumably, this is because the gut is one of the organs that is constantly bombarded by stimuli from the environment, whether the stimuli that drive these B-cell clones are derived from the microbiome or other pathogens is not yet known," Prak said.

A model of the human body showing distinct B cell clonal networks in the gastrointestinal tract and in the blood-rich organs such as bone marrow, spleen, and lung. Source: Alexander H. Farley

The development of the sequencing technology that resulted in the discovery of the “B cell clonal geography” took researchers over two years. Using the technology, they traced more than 933,000 B cell lineages after sequencing the heavy-chain variable domain region of the B cell gene. This particular region is largely responsible for the diversity of antibodies that helps the body defend against and remember a vast amount of pathogens.

“Our fantasy for the future is to create organ-specific immune monitoring assays,” Prak said. “If we can define features of the antibody repertoire that are unique to particular tissues, we may be able to monitor tissue-specific immune responses using blood-based clinical lab tests."

Prak’s plans would be extremely valuable for the monitoring of autoimmune diseases and the different responses individuals have to vaccines.

The present study was published in the journal Nature Biotechnology.

Source: University of Pennsylvania School of Medicine

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAY 02, 2018
Immunology
MAY 02, 2018
Photographing the Measles Virus
The measles virus was caught leaving infected cells by the scientific paparazzi, that is, experts from Emory Health Sciences using cryo-electron tomography
MAY 07, 2018
Immunology
MAY 07, 2018
Breast Milk: An Important Source of Protective Immune Cells
For the first time, scientists have identified innate lymphoid cells (ILCs) among the arsenal of protective cells transferred to newborn babies via breast
MAY 08, 2018
Immunology
MAY 08, 2018
Nuclear Pore Complexes Vital for T Cell Survival
What’s happening on the molecular level that ensures protective T cells of the immune system will do their job? A new study from Sanford-Burnham Preb
MAY 14, 2018
Immunology
MAY 14, 2018
The Immune System's Antibodies Target Multiple Microbes
For the first time, scientists found that antibodies produced by the immune system can target multiple microbes, as opposed to just one type of microbe. Fr
MAY 16, 2018
Immunology
MAY 16, 2018
Antibodies Neutralize Two Different Hemorrhagic Fever Viruses
Scientists have found evidence for potential antibody-based therapeutics to treat more than one hemorrhagic fever virus at once. From Harvard Medical Schoo
JUN 22, 2018
Health & Medicine
JUN 22, 2018
A New Test for Peanut Allergy: Better, Faster, Cheaper.
Scientists from the Medical Research Council (MRC) in the UK have come up with a test to detect peanut allergies and it’s safer, quicker and more acc
Loading Comments...