FEB 06, 2018 10:56 AM PST

Scientists Use Robotics to Create Effective HIV Vaccines

WRITTEN BY: Kara Marker

Scientists continue to build upon a vaccine candidate to prevent HIV infection, the virus that causes AIDS. AIDSVAX was first developed and tested in the 90s, but now a University of California Santa Cruz scientist is working on perfecting it. Using new robotics technology, researchers are making the vaccine development process more effective and more productive, cutting costs and saving time all the while.

Scanning electromicrograph of an HIV-infected T cell. Credit: NIAID

"Dozens of interesting vaccine candidates have been described, but most have not been tested in humans because it has not previously been possible to manufacture them affordably and in a timely fashion," explained Phil Berman from the University of California Santa Cruz. "The technology we developed should break the logjam in HIV vaccine development, because it tremendously shortens the time, improves the yield, and lowers the cost."

Berman is talking about the multitude of problems many scientists have faced while tackling the production of an effective vaccine to prevent HIV. The virus’s envelope proteins are difficult to imitate and include in a vaccine, which is needed to stimulate the immune system and build immunity against the virus.

Using robotics, Berman and his team were able to make a variety of improvements on the AIDSVAX vaccine and the developmental process:

  1. Decrease the time required to produce stable cell lines, which are necessary for making HIV envelope proteins, an important “ingredient” of an HIV vaccine
  2. Increase the amount of protein the cell lines can produce
  3. Reduce equipment and material costs

Berman was also successful in creating cell lines that make HIV envelope proteins with the right kind of carbohydrate components - glycans - needed for an effective immune response.

"The conventional way of making these envelope protein vaccines incorporated the wrong kind of carbohydrates,” Berman explained. “We now know that destroyed many of the important antigenic sites recognized by protective antibodies."

Glycans are the unique carbohydrates found on HIV envelope proteins. Berman and his team used CRISPR/Cas9 gene editing technology to create a new cell line called “MGAT CHO” that produces the right kind of glycans. Additionally, the process turned out to be simpler and less expensive than others used to recover and purify proteins.

"People used to think carbohydrates are not immunogenic, but HIV turns everything on its head, and it turns out that the most important antibodies are directed to this unusual carbohydrate," Berman said. "We can now make vaccines with it for the first time.”

Berman hopes that the improvements made on the HIV vaccine will improve its efficacy from 31 percent to more than 50 percent. He currently has two cell lines ready to produce vaccines on a large scale, and he is looking for funding to conduct clinical trials.

Sources: aidsmap, University of California Santa Cruz

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
FEB 12, 2020
Drug Discovery & Development
FEB 12, 2020
Does Traditional Chinese Medicine Work Against Coronavirus?
Over 45,000 cases of Wuhan Coronavirus have been reported globally, alongside over 1,100 deaths. Although over 4,700 peo ...
FEB 19, 2020
Immunology
FEB 19, 2020
Rainbow trout hold the key to unravelling immunological mysteries
What do the gut microbiome, antibodies, and rainbow trout have in common? A lot, says researcher J. Oriol Sunyer from th ...
FEB 21, 2020
Drug Discovery & Development
FEB 21, 2020
New Antibiotics Found Using AI Technology
Using AI, researchers at MIT have found a powerful new antibiotic capable of killing some of the most dangerous drug-res ...
MAR 02, 2020
Drug Discovery & Development
MAR 02, 2020
DIY Fecal Transplants Improve Symptoms in 82% of People
Fecal transplants (FMT), the process of putting a healthy person’s fecal matter into another person’s colon, ...
APR 09, 2020
Drug Discovery & Development
APR 09, 2020
4 Natural Antihistamines with No Side Effects
Over-the-counter antihistamine treatments are known to be effective for relieving allergic symptoms. However, they are a ...
MAY 21, 2020
Drug Discovery & Development
MAY 21, 2020
Molecular 'Switch' Makes Autoimmune Drugs Fight Cancer
Researchers from the Antibody and Vaccine Group at the University of Southampton, England, have identified a way to repu ...
Loading Comments...