FEB 16, 2018 07:15 AM PST

Treating Untreatable Heart Failure with Cardiac Macrophages

WRITTEN BY: Kara Marker

Immune cells called macrophages contribute to an untreatable type of heart failure. At least, this type of heart failure is untreatable for the time being. From Massachusetts General Hospital (MGH), scientists identify key differences between how different types of heart failure develop. Bringing these differences to light could aid in the creation of new treatments for heart failure.

A macrophage of a mouse forming two processes to phagocytize two smaller particles, possibly pathogens. Credit: Wikimedia user magnaram

A specific type of heart failure characterized by “preserved ejection fraction” is also called diastolic heart failure. Ejection fraction is a measure of how much blood is getting pumped out the heart with each heartbeat. When ejection fraction is “preserved,” it means that the heart is contracting normally, but its ventricles do not relax normally.

Diastolic heart failure is directly compared to systolic heart failure, a result of “reduced” ejection fraction. This type of heart failure deals with the opposite problem: the heart muscle’s inability to contract normally.

Symptoms of both diastolic and systolic heart failure are similar, but it’s very likely that each condition requires a different treatment approach. In the present study, MGH scientists focus on diastolic heart failure, which makes up about 50 percent of all human heart failure cases.

"We show that macrophages - white blood cells primarily known for removing cellular debris, pathogens and other unwanted materials - are actively involved in the development of [preserved ejection fraction]," explained lead author Maarten Hulsmans, PhD, from MGH. "These findings put macrophages on the map when it comes to [diastolic heart failure] therapy and open up previously unexplored treatment options."

To identify a potential set of solutions for diastolic heart failure, scientists first needed to better understand how the disease develops: when cellular interactions in the heart, including macrophages, lead to disease instead of promoting normal heart activities.

In a healthy response, macrophages activate cells called fibroblasts to “reinforce” tissue damaged by a heart attack. But if macrophages activate too many fibroblasts, damaged tissues become stiff, which only makes cardiac function worse.

In their study, researchers used two mouse models of diastolic heart failure, assessing the cellular repercussions of preserved ejection fraction. Initially, they saw elevated levels of macrophages in the left ventricle as well as more evidence of interleukin (IL)-10, a chemical messenger of the immune system that promotes fibroblast activation.

In one of the models, research induced IL-10 deficiency in cardiac macrophages. This resulted in lower macrophage levels and, subsequently, lower cardiac fibroblast activity.

"Through their participation in the remodeling of heart tissue, these macrophages increase the production of extracellular matrix, which reduces diastolic relaxation,” Hulsmans explained. “Our findings regarding the cell-specific knockout of IL-10 are the first to support the contribution of macrophages to [diastolic heart failure]."

With the findings from Hulsmans’s new study come hopes for new drug development based on the new understanding of the relationship between heart muscle cells, macrophages, and fibroblasts.

The present study was published in the Journal of Experimental Medicine.

Sources: American Heart Association, Massachusetts General Hospital

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
NOV 13, 2019
Health & Medicine
NOV 13, 2019
Drug-resistant Candida Auris is Spreading
A drug-resistant fungal yeast, Candida auris, is spreading throughout hospitals worldwide. Deemed “an urgent threat” by the Center for Disease...
NOV 13, 2019
Microbiology
NOV 13, 2019
The Developing Fetus is Exposed to Bacteria in the Womb
Our bodies host many microbes, and scientists have been learning more about the role of this microbiome in our health, and when it is established....
NOV 13, 2019
Cell & Molecular Biology
NOV 13, 2019
Stem Cell Derived Natural Killer T Cells as Novel and Long-term Cancer Treatment
Hematopoietic stem cells are used to create a population of Natural Killer T-cells that could sustain and renew within the immune system, and attack cancer cells....
NOV 13, 2019
Microbiology
NOV 13, 2019
Molecule in Human Breast Milk Can Fight Microbial Pathogens
Now a team of scientists has found a molecule in human breast milk that may reduce the risk of illness and disease....
NOV 13, 2019
Immunology
NOV 13, 2019
This is How Your Immune System Responds to Ebola Vaccination
Vaccines to prevent Ebola are still in their infancy, with experimental-only versions being used only in the most dire of instances. In a new study, scient...
NOV 13, 2019
Immunology
NOV 13, 2019
Immune System Responsible for Organ Failure in Malaria
In the most severe cases of malaria, a person can experience organ failure and die. Often times, though, this is not directly due to the parasitic malaria ...
Loading Comments...