FEB 16, 2018 7:15 AM PST

Treating Untreatable Heart Failure with Cardiac Macrophages

WRITTEN BY: Kara Marker

Immune cells called macrophages contribute to an untreatable type of heart failure. At least, this type of heart failure is untreatable for the time being. From Massachusetts General Hospital (MGH), scientists identify key differences between how different types of heart failure develop. Bringing these differences to light could aid in the creation of new treatments for heart failure.

A macrophage of a mouse forming two processes to phagocytize two smaller particles, possibly pathogens. Credit: Wikimedia user magnaram

A specific type of heart failure characterized by “preserved ejection fraction” is also called diastolic heart failure. Ejection fraction is a measure of how much blood is getting pumped out the heart with each heartbeat. When ejection fraction is “preserved,” it means that the heart is contracting normally, but its ventricles do not relax normally.

Diastolic heart failure is directly compared to systolic heart failure, a result of “reduced” ejection fraction. This type of heart failure deals with the opposite problem: the heart muscle’s inability to contract normally.

Symptoms of both diastolic and systolic heart failure are similar, but it’s very likely that each condition requires a different treatment approach. In the present study, MGH scientists focus on diastolic heart failure, which makes up about 50 percent of all human heart failure cases.

"We show that macrophages - white blood cells primarily known for removing cellular debris, pathogens and other unwanted materials - are actively involved in the development of [preserved ejection fraction]," explained lead author Maarten Hulsmans, PhD, from MGH. "These findings put macrophages on the map when it comes to [diastolic heart failure] therapy and open up previously unexplored treatment options."

To identify a potential set of solutions for diastolic heart failure, scientists first needed to better understand how the disease develops: when cellular interactions in the heart, including macrophages, lead to disease instead of promoting normal heart activities.

In a healthy response, macrophages activate cells called fibroblasts to “reinforce” tissue damaged by a heart attack. But if macrophages activate too many fibroblasts, damaged tissues become stiff, which only makes cardiac function worse.

In their study, researchers used two mouse models of diastolic heart failure, assessing the cellular repercussions of preserved ejection fraction. Initially, they saw elevated levels of macrophages in the left ventricle as well as more evidence of interleukin (IL)-10, a chemical messenger of the immune system that promotes fibroblast activation.

In one of the models, research induced IL-10 deficiency in cardiac macrophages. This resulted in lower macrophage levels and, subsequently, lower cardiac fibroblast activity.

"Through their participation in the remodeling of heart tissue, these macrophages increase the production of extracellular matrix, which reduces diastolic relaxation,” Hulsmans explained. “Our findings regarding the cell-specific knockout of IL-10 are the first to support the contribution of macrophages to [diastolic heart failure]."

With the findings from Hulsmans’s new study come hopes for new drug development based on the new understanding of the relationship between heart muscle cells, macrophages, and fibroblasts.

The present study was published in the Journal of Experimental Medicine.

Sources: American Heart Association, Massachusetts General Hospital

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAR 31, 2020
Health & Medicine
MAR 31, 2020
20 Facts About the Placenta - A Lifeline Between a Mother and Her Baby
The placenta is the lifeline that connects the mother and her baby. It is a multi-functiona organ that is responsible fo ...
MAR 16, 2020
Drug Discovery & Development
MAR 16, 2020
Critical Interleukin Leads to Drug Discovery
The immune molecule interleukin-2 (IL-2) is a growth factor that stimulates the immune system to produce T-cells. Their ...
APR 08, 2020
Drug Discovery & Development
APR 08, 2020
Does Tuberculosis Vaccine Really Defend from COVID-19?
The spread of COVID-19 has panned out very differently in different countries. While in some such as the US, the UK and ...
APR 15, 2020
APR 15, 2020
Why More Men than Women Die from COVID-19
As of April 9th, over 60% of deaths from COVID-19 in New York state were men. Meanwhile, as of April 6, 82% of patients ...
MAY 07, 2020
Cell & Molecular Biology
MAY 07, 2020
How the Function of a Critical Immune Cell is Related to Metabolism
This work suggests that it may be possible to dampen autoimmunity or promote an immune attack on cancer through a bioche ...
MAY 18, 2020
MAY 18, 2020
An Antibody Against SARS May Neutralize SARS-CoV-2
SARS-CoV caused an outbreak of SARS in 2003. Samples collected from those patients back then may help us against SARS-Co ...
Loading Comments...