FEB 28, 2018 10:35 AM PST

New Digital Imaging Analysis Spots HIV Degradation

WRITTEN BY: Kara Marker

A new system that tracks proteins as they come and go in the cell is predicted to help scientists identify therapeutic targets for a multitude of diseases including HIV, cancer, and Alzheimer’s. From the Sanford-Burnham Prebys (SBP) Medical Discovery Institute, scientists focus first on HIV, using the new imaging-based approach to study protein stability.

Scanning electron micrograph of HIV-1 budding from cultured lymphocyte. Multiple round bumps on cell surface represent sites of assembly and budding of virions. Credit: CDC Public Health Image Library

The new “Global Arrayed Protein Stability Analysis" (GAPSA) system is the first cell-based platform that screens for the production and destruction of proteins via high-throughput, genome-scale imaging. It works by identifying circuits in proteins that drive destruction.

In the present study, researchers focused on identifying human proteins degraded by HIV as it promotes its infection process. But in addition to identifying HIV-associated proteins, GAPSA could, in the future, aid in identifying novel therapeutic targets for Alzheimer’s disease, cancer, autoimmune disorders, and infectious disease, including Ebola, influenza, Zika, and more.

GAPSA helped scientists identify proteins in the human host that an HIV accessory protein called Vpu targets as a way to infect the cell and promote replication. Vpu destroys host proteins whose very function is to protect the cell from HIV infection. Vpu also works alongside another HIV accessory protein, Vif, which regulates viral infectivity.

"We selected Vpu as a test case because although some Vpu targets were known, we suspected there were more,” explained senior author Sumit Chanda, PhD. “Indeed, GAPSA was able to pinpoint several host proteins with anti-viral activity that had not been reported in connection with HIV."

In total, Chanda and his team screened 433 interferon-stimulated genes (ISGs), which activate in response to an infection. The screened each against Vpu to “create a more comprehensive list of HIV’s cellular targets,” explained co-author Lars Pache, PhD.

What can identifying Vpu targets with GAPSA do for the anti-HIV agenda? Researchers hope that they can translate their findings into the discovery of new drugs to block Vpu-directed protein destruction, enabling these proteins do their job and protect the body from HIV infection.

“In addition to providing critical knowledge of how cells work, the technology can be applied to identify protein degraders that specifically target disease-causing proteins, which can open new therapeutic opportunities for a multitude of diseases," Chanda explained.

Chanda, Pache, and others hope to continue their research by communicating with scientists in different fields to identify molecular circuits that regulate protein stability in the contexts of different diseases.

“We plan to use the the technology to comprehensively catalog pairs of all human proteins known to regulate degradation and their cellular targets,” Chanda said. “We anticipate that this compendium of activities will expand the therapeutic landscape for many diseases."

The present study was published in the journal Cell Reports.

Sources: Methods in Molecular Biology, Sanford-Burnham Prebys Medical Discovery Institute

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAR 02, 2021
Immunology
Another Trick up Tumors' Sleeves Exposed
MAR 02, 2021
Another Trick up Tumors' Sleeves Exposed
Tumors have sneaky strategies for establishing themselves within healthy tissues, flourishing in plain sight of circulat ...
APR 19, 2021
Cell & Molecular Biology
Insight Into the Molecular Basis of Rheumatoid Arthritis
APR 19, 2021
Insight Into the Molecular Basis of Rheumatoid Arthritis
New research has shown how variants in an immune gene can lead to a high risk of developing the autoimmune disorder rheu ...
MAY 06, 2021
Immunology
COVID Vaccines Don't Protect Everyone
MAY 06, 2021
COVID Vaccines Don't Protect Everyone
New research has revealed that COVID-19 vaccines may not work as effectively in those whose immune systems have been neg ...
MAY 24, 2021
Immunology
How Grief Can Affect the Immune System
MAY 24, 2021
How Grief Can Affect the Immune System
A new study by researchers at Rice University has shown that sleep loss often following the death of a spouse can have l ...
MAY 24, 2021
Cell & Molecular Biology
Animal Trial of Asthma Vaccine Has Positive Results
MAY 24, 2021
Animal Trial of Asthma Vaccine Has Positive Results
Asthma is thought to affect 340 million people. A type of asthma that happens when allergens like dust mites are inhaled ...
JUN 15, 2021
Immunology
Secrets of Immune Cell Movement Revealed
JUN 15, 2021
Secrets of Immune Cell Movement Revealed
Circulating immune cells are constantly on the lookout for the presence of any pathogenic intruders in the body. Once a ...
Loading Comments...