APR 11, 2018 4:58 AM PDT

Gene Editing Tools Reveal Two Key Genes Involved in Influenza Infection

WRITTEN BY: Kara Marker

Using CRISPR/Cas9 gene editing tools, researchers identified two genes responsible for suppressing the immune system and allowing the influenza virus to infect human lung cells. From the University of Chicago Medical Center, scientists describe how these genes can change the therapeutic approach to the flu.

Representation of the influenza virus. Credit: CDC

Flu treatments are limited, and vaccines don’t always work. The flu virus is notorious for mutating, changing so scientists have to change treatments every year. The new genetic screening tool identified key genes involved in the immune response to the flu, and the same tool could also help uncover key genes involved in other diseases.

"The next wave of antiviral treatments will be in part directed toward the host, so our work helps us get a better understanding of what proteins and pathways are utilized by the influenza virus,” explained lead author Julianna Han.

The CRISPR/Cas9 gene editing tools enabled scientists to knock out specific genes, meaning they suppressed expression of those genes in human lung cells. How does it work? Researchers used those tools to create a library of modified human epithelial lung cells, each missing a different gene, so scientists can see which changes impact the response to flu.

Human epithelial lung cells line the airways, making them the first cells to be infected with the flu virus. In their studies, researchers collected nearly 19,000 different genetic variations of the cell in their genetic library. They exposed each cell to the H5N1 flu strain, an influenza A virus also known as bird flu. Essentially using process of elimination, researchers began looking for genes that affected the virus’s ability to infect and replicate and those that helped the cell resist viral infection.

After several experiments, researchers found several cells that were resistant to the flu. Two genes united these cells, SLC35A1 and CIC. SLC35A1 expression produces a protein involved in the flu virus’s cell-surface receptors. Without SLC35A1, the flu virus couldn’t bind and infect the host cell.

CIC is suppresses the cellular immune response to pathogens. Without CIC, cells can promote the production of antiviral and inflammatory genes. Researchers found that CIC is also important for other strains of flu and some RNA viruses.

Study researchers pointed out that if altering the SLC35A1 or CIC genes is applied as an anti-flu strategy, this alteration can only be temporary, eventually allowing the immune system to fight the flu and then return to normal. Temporary, not permanent, action would be necessary to avoid autoimmune disorders where the immune system overreacts.

"By turning off CIC, we now allow for expression of antiviral genes that are able to respond to the flu infection," explained Balaji Manicassamy, PhD. "But it's also probably regulating inflammatory gene expression in autoimmunity and some cancers. It's a new twist that may be broadly applicable to other diseases besides the flu."

The present study was published in the journal Cell Reports.

Sources: University of Chicago Medical Center

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
FEB 10, 2020
Immunology
FEB 10, 2020
How Cancer Evades the Immune System Time and Time Again
Scientists discovered a new mechanism by which cancer cells evade the immune system to further their own agenda: invade, ...
FEB 19, 2020
Immunology
FEB 19, 2020
Testing the Immune Response to Ovarian Cancer Treatment
There is a new diagnostic test for the deadliest form of gynecological cancer – ovarian cancer. Better tests mean ...
FEB 21, 2020
Drug Discovery & Development
FEB 21, 2020
New Antibiotics Found Using AI Technology
Using AI, researchers at MIT have found a powerful new antibiotic capable of killing some of the most dangerous drug-res ...
MAR 06, 2020
Drug Discovery & Development
MAR 06, 2020
Scorpion-derived Proteins Deliver Arthritis Treatment
New research published in the journal Science Translational Medicine shows that that a scorpion-derived proteins could s ...
APR 15, 2020
Immunology
APR 15, 2020
How Malaria Protects Itself from the Immune System
A specific parasitic species causes the most deaths from malaria: Plasmodium falciparum. This parasite does so by avoidi ...
MAY 12, 2020
Immunology
MAY 12, 2020
Disabling Genes in Immune Cells Prevents Obesity
Obesity is a $1.7 trillion problem in the United States — a value almost 10% of the nation’s gross domestic ...
Loading Comments...