MAY 23, 2018 11:44 PM PDT

Isolating The Source of Interleukin-25 In Common Respiratory Disorders

WRITTEN BY: Nouran Amin

The latest discovery from the Perelman School of Medicine at the University of Pennsylvania examined the mechanisms behind how the immune system responds to common sinus infections and asthma attacks.

 

This discovery may explain why affected individuals develop these issues in the first place with hopes to create an effective therapeutic strategy. More specifically, investigators isolated the source of the inflammatory cytokine Interleukin-25 (IL-25), which is an immune molecule that recruits a subset of inflammatory cells. Most commonly diagnosed respiratory disorders, such as chronic rhinosinusitis and asthma, have been tied to elevated levels of IL-25, but the origins remain unknown.

 

Now, the source of IL-25 is believed to be a solitary chemosensory cell (SCC). In tissue samples that are non-inflamed, SCCs compose one percent of human cells lining the sinuses. But, when the researchers examined human nasal polyps, the number of SCCs that lining the polyp tissue have strikingly increased. Furthermore, when these cells were treated with inflammatory molecule Interleukin-13 (IL-13), which has also been involved in driving nasal polyp formation and asthma, it stimulated the expansion of the SCCs and increased the production of IL-25. "The more of these cells are present, the more likely the body will mount an inappropriate, exaggerated immune response due to elevated levels of IL-25. The body ends up in a vicious cycle, and so it never goes back to its baseline," explains the study's senior author Noam A. Cohen, MD, Ph.D., director of Rhinology Research at Penn.

 

Structure of Interleukin-13

The researchers also discovered that IL-25 is not relapsed in tissues, but relapsed in the mucus. This means that IL-25 has to come from the mucus before it reaches the tissue to exert its effects. Otherwise, IL-25 remaining in the mucus site will be excreted out of the body through sneezing. "We can measure levels of IL-25 in the mucus, so it's possible this can be an indicator of who will develop conditions like polyps or asthma," adds the study's lead author Michael Kohanski, MD, Ph.D. "Also, if we can bind up IL-25 before it reaches the tissue, we may be able to prevent the inflammation altogether." SCC's secreting IL-25 is fairly a normal process, and therefore it is not something that can be prevented. "Rather, we want to control the excessive concentrations found in polyps in a targeted way, perhaps with a nasal spray," explains Cohen.

https://b98584f181.site.internapcdn.net/tmpl/v5/img/1x1.gif

Source: Journal of Allergy and Clinical Immunology

About the Author
  • Nouran enjoys writing on various topics including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
APR 06, 2018
Clinical & Molecular DX
APR 06, 2018
New Diagnostic Test for Lyme Disease
Diagnostic tests for Lyme disease, or Lyme neuroborreliosis (LNB) can take up to a week, but patients affected need antibiotics as soon as possible to prev...
APR 17, 2018
Immunology
APR 17, 2018
New Experimental Model for ALS and MS Immunotherapies
A new mouse model allows researchers to study the impact of immune cell function in the brain on diseases like amyotrophic lateral sclerosis (ALS) and mult...
MAY 14, 2018
Immunology
MAY 14, 2018
The Immune System's Antibodies Target Multiple Microbes
For the first time, scientists found that antibodies produced by the immune system can target multiple microbes, as opposed to just one type of microbe. Fr...
MAY 22, 2018
Cancer
MAY 22, 2018
Novel PD-L1/TGF-ß Fusion Protein for HPV-Associated Cancers Enters Phase II Clinical Trial
Novel PD-L1/TGF-ß fusion protein for HPV-associated cancers enters phase II clinical trial. Oncology researchers excited about the potential of this bi-functional protein to combat cancer...
JUL 24, 2018
Immunology
JUL 24, 2018
T Cells Aggravate Parkinson's Disease
The T cell, Th17, that kill nerve cells have increased levels in the midbrain of Parkinson's patients leading to destruction of neuronal cells....
AUG 10, 2018
Immunology
AUG 10, 2018
Cancer Cell 'Drones' Battle Immune System
Cancer cells release PD-L1 containing exosomes that circulate in the blood and stop T cells before they can reach tumors....
Loading Comments...