DEC 12, 2013 12:00 AM PST

Surprising Discovery With Blood Clots and Bacteria

WRITTEN BY: Jen Ellis
The phrase "blood clot" rarely has a positive spin-most people associate blood clots with traumatic and potentially fatal events such as strokes and heart attacks. However, your blood's ability to clot is important for your survival. The clotting process, a product of proteins known as clotting factors that help to bind platelets together, provides a physical barrier to stop bleeding and prevent bacteria and other contaminants from entering wounds and creating infection.

Researchers at UC Davis recently discovered another benefit of blood clots, according to results in the recent issue of the journal PLoS ONE. Blood clots appear to not only provide a physical barrier to bacteria, they also absorb and bind these toxins within their structure, further reducing the chance of septic shock via infection.

The team studied lipopolysaccharide, a toxin released by bacteria that produces inflammation at small amounts in the bloodstream-and, without treatment, can lead to septic shock in larger amounts. (Even with treatment, septic shock is estimated to affect close to 300,000 people per year in the US, and kill between 30-50% of those affected-even with the use of today's most advanced antibiotics.)

For a different project in the area of plant research, the scientists had created a fluorescent marker for a molecule similar to lipopolysaccharide. The team decided to use this marker to investigate the interaction between blood clots and lipopolysaccharide. They found that in a laboratory setting, blood clots, which had been in contact with bacterial lipopolysaccharide, were detected by fluorescent probes, verifying that lipopolysaccharide was attached to the surface structure of the blood clots.

The mechanism was tested in blood clots from both humans and mice. Because of their similar clotting responses using different blends of clotting factor proteins and cells, equivalent clotted materials from horseshoe crabs and lobsters were also tested. In every case, the research team was able to verify that lipopolysaccharides with fluorescent markers were bound within the fibrous structure of the blood clots.

Not only were lipopolysaccharides attached, they were attached so tightly that typical chemical treatments designed to extract large molecules from protein structures were not effective in removing them from the clots. With this strong binding mechanism to toxins, blood clots may provide an active defense against infection as well as a passive barrier. The next question: could these results be verified with in vivo testing?

Peter Armstrong, a professor at UC Davis and the senior author of the recently published paper, was able to do so with the assistance of Harvard University and Beth Israel Deaconess Medical Center. By filming blood clots in live mice, Armstrong was able to provide real-time evidence that the clots effectively absorbed lipopolysaccharides.

It's already known that septic shock can cause blood clots to form quickly throughout the bloodstream. These findings may explain part of the reason why. On smaller scales throughout the body, these clots may be acting as a defense mechanism by binding localized toxins and retarding the spread of infection. This research may lead to more in-depth understanding of the development of sepsis and natural defense mechanisms. More importantly, it may eventually lead to improved infection prevention and treatment methods.
About the Author
You May Also Like
MAY 04, 2020
Genetics & Genomics
Molecular Tools Reveal More About the Impacts of the Slave Trade
MAY 04, 2020
Molecular Tools Reveal More About the Impacts of the Slave Trade
Scientists still have a lot to learn about the numerous and varied consequences of the transatlantic slave trade, which ...
MAY 07, 2020
Genetics & Genomics
Will the Next Outbreak Come From Cattle?
MAY 07, 2020
Will the Next Outbreak Come From Cattle?
Many species of Campylobacter bacteria are infectious and can cause a disease called campylobacteriosis in animals and p ...
JUN 10, 2020
Drug Discovery & Development
Does Your Gut Microbiota Alter Drug Activity?
JUN 10, 2020
Does Your Gut Microbiota Alter Drug Activity?
Scientists have created a systematic way to evaluate how the microbial community in our gut influences drug behavior. Fi ...
JUN 27, 2020
Microbiology
Learning More About How Bacteria Become Dangerous
JUN 27, 2020
Learning More About How Bacteria Become Dangerous
We have to share the world with microbes; they can grow almost anywhere, from hydrothermal vents deep in the sea, to the ...
JUL 19, 2020
Microbiology
A Hybrid Fungus Is Linked to Lung Infections
JUL 19, 2020
A Hybrid Fungus Is Linked to Lung Infections
A type of fungus that's been found in soil or plants has now been identified in a hospital environment and in people for ...
JUL 28, 2020
Microbiology
Scientists Find a Molecule That Causes Body Odor
JUL 28, 2020
Scientists Find a Molecule That Causes Body Odor
Most people will go to great lengths to prevent body odor. Now scientists have identified a bacterial enzyme that is a s ...
Loading Comments...