JUN 11, 2018 6:06 PM PDT

Seeing Gene Transfer as it Happens

WRITTEN BY: Carmen Leitch

It’s known that microbes can pick up new pieces of genetic material; that is one way bacteria can share genes that confer resistance to antibiotics. Now scientists have used methods they developed to catch the process, known as horizontal gene transfer, in action. Thin appendages called pili stretch out from a bacterium and grab genetic material (as seen in the video - courtesy Ankur Dalia, Indiana University), then incorporate these gene fragments into their own genome. This work has been published in Nature Microbiology

"Horizontal gene transfer is an important way that antibiotic resistance moves between bacterial species, but the process has never been observed before since the structures involved are so incredibly small," said senior author Ankur Dalia, an assistant professor in the IU Bloomington College of Arts and Sciences' Department of Biology. "It's important to understand this process, since the more we understand about how bacteria share DNA, the better our chances are of thwarting it.”

For this work, the investigators used the Vibrio cholerae microbe, which causes cholera. Resistance to antibiotics is rising in this bacterium, which causes around 120,000 deaths a year worldwide. 

While it was assumed that pili were a main part of horizontal gene transfer, direct evidence like what’s seen in the video has only now been found, noted Dalia. The researchers invented a way to label both the pili and DNA pieces with a fluorescent dye. That work was led by IU Distinguished Professor Yves Brun and IU graduate student Courtney Ellison, who is the first author of the study.

The upper images show a bacterial pilus (in green) latching onto a piece of DNA (in red) and pulling it back into the cell, the first steps in the DNA uptake process. The lower images show the same cells without the florescent dyes. / Credit: Ankur Dalia, Indiana University

The pili act like miniature harpoons that come out of a tiny portal to spear a DNA target at the tip. Then the pili use the same pore to reel the genetic material back into the bacterial cell. The pore is very small, said Dalia, and the DNA needs to fold in half to pass through.

"It's like threading a needle," said Ellison. "The size of the hole in the outer membrane is almost the exact width of a DNA helix bent in half, which is likely what is coming across. If there weren't a pilus to guide it, the chance the DNA would hit the pore at just the right angle to pass into the cell is basically zero."

The team is continuing this work, said Dalia; they want to investigate how the pili grab the DNA at the perfect place. That connection seems to be a new kind of interaction. They also want to use their new labeling method to study other functions of pili.

"These are really versatile appendages," Dalia said. "This method invented at IU is really opening up our basic understanding about a whole range of bacterial functions."

 

Sources: AAAS/Eurekalert! Via Indiana University, Microbiology Society, Nature Microbiology

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 17, 2021
Microbiology
Novel Bacteria Discovered on Space Station
MAR 17, 2021
Novel Bacteria Discovered on Space Station
Scientists have known that wherever humans go, we carry microorganisms with us, and the International Space Station is n ...
APR 25, 2021
Microbiology
Plant-Eating Microbes Expand the Tree of Life
APR 25, 2021
Plant-Eating Microbes Expand the Tree of Life
After microbes called archaea were discovered in the 1970s, a branch was added to the tree of life after some debate, wh ...
MAY 03, 2021
Cell & Molecular Biology
Are Retrons the Next CRISPR?
MAY 03, 2021
Are Retrons the Next CRISPR?
After being identified in the 1980s, it was thought that retrons were just an odd feature of some bacterial cells. But e ...
MAY 20, 2021
Clinical & Molecular DX
Gonorrhea Testing on the Go
MAY 20, 2021
Gonorrhea Testing on the Go
Forget lab-based tests—a new portable microfluidic device links to a mobile app, diagnosing gonorrhea in just 15 m ...
MAY 28, 2021
Genetics & Genomics
Some Biofilms Seem to Activate Cancer Genes
MAY 28, 2021
Some Biofilms Seem to Activate Cancer Genes
New research assessed bacterial and fungal biofilms, tenacious microbial communities that are tougher than small groups ...
MAY 30, 2021
Microbiology
The Mechanics of a Gliding Microbe, Revealed
MAY 30, 2021
The Mechanics of a Gliding Microbe, Revealed
Humans have been able to use machines to master movement, but there are many organisms that can get around just fine on ...
Loading Comments...