JUN 19, 2018 04:57 PM PDT

The Impact of Antibiotics on Gut Microbes

WRITTEN BY: Carmen Leitch
2 9 285

Our bodies play host to trillions of microorganisms; we carry about one bacterial cell for every human cell. That community of microbes, our microbiome, plays a critical role in our health and researchers are learning more about it (hear about that research in the video). New work has focused on how antibiotics impact the gut microbiome. The microbes that live in the gut have to be able to respire in that environment. The research, reported in eLife, has shown that antibiotics have an effect on the availability of electrons in the gut, which impacts the growth of bacteria, who compete for those electrons.

"The gut microbiome consists of a community of microbes which, when disturbed, exposes the host to risks such as infection," said first author Aspen Reese, who led the study while a graduate student at Duke University. "While it was already known that antibiotics kill or prevent the growth of bacteria in the gut, it was not clear exactly how and when those changes affect the gut environment."

The researchers used a mouse model to investigate the impact of broad-spectrum antibiotics, which can kill a wide variety of bacteria. They measured redox potential in the gut, which can indicate how easy it is for organisms to respirate. 

They found that antibiotics increase redox potential. This occurred in mice that were treated with antibiotics, as well as mice that were engineered to lack an immune system. 

"We also saw that as antibiotics removed bacteria and reduced their metabolic rates in the mouse gut, there was an increase in oxidizing agents called electron acceptors," explained Reese. "This new environmental state meant that the microbial community which recolonized after treatment looked very different from the original community."

E. coli bacteria, one of the many strains commonly found in the human intestines. / Image credit: Pixnio

Some bacteria sprang back after the antibiotic treatments stopped, including some that have the potential to be harmful; those bacteria that thrived after treatment stopped were able to use the electron acceptors in the environment to aid their growth. That rapid expansion used up the available resources and the gut returned to normal, but the original microbial community was not necessarily reestablished.
 
"Antibiotics may drive some microbe species extinct in a gut community, so new microbial immigrants from outside the mouse - in this case from an untreated mouse in the same cage - were likely needed to return the microbiota to its original state," noted senior author Lawrence David, Assistant Professor of Molecular Genetics and Microbiology at Duke University.

The research suggests that changes in the redox potential may relate to intestinal disorders and bacterial growth in the gut. Heightened redox potential is to be expected in inflamed guts, the researchers noted.

"In the future, our work could help inform the development of drugs that either include chemical alterations of redox potential, or that introduce competitors for excess electron acceptors, to help treat microbial disorders or prevent antibiotic-associated infections," Reese concluded.

 


Sources: AAAS/Eurekalert! Via eLifeSciences, eLife

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 29, 2018
Genetics & Genomics
APR 29, 2018
CRISPR Can Now Edit Genes Outside of the Cell
The CRISPR/Cas9 gene-editing tool was made from an immune defense system used by bacteria. Scientists have found it has many applications.
MAY 29, 2018
Cancer
MAY 29, 2018
Early Research Makes Connection Between Liver Tumor Growth Control and Gut Microbiota
Our gut microbiota is unique, but many organisms are shared across populations of people. Early research shows a connection between liver tumors and the control of their growth by microbiota
JUN 12, 2018
Genetics & Genomics
JUN 12, 2018
Giant Viruses can Make Their own Genes
Researchers have discovered something incredible about giant viruses.
JUN 21, 2018
Clinical & Molecular DX
JUN 21, 2018
Unique Gene Signature in the Blood Indicates TB Diagnosis
A unique series of genes could tell doctors that a person will develop a tuberculosis (TB) infection months before symptoms are visible. From The Francis C
JUL 01, 2018
Microbiology
JUL 01, 2018
Using Bacteria to Help Power Space Missions
There are microbes that have found a way to use electricity for power, and scientists want to see how they can help us.
JUL 21, 2018
Genetics & Genomics
JUL 21, 2018
Designer Cells Sense & Destroy MRSA
Staphylococcus aureus is thought to lead to over 11 million visits to the doctor and the ER every year in the US alone.
Loading Comments...