JUL 26, 2018 7:42 PM PDT

How Microbes Communicate Over Long Distances

WRITTEN BY: Carmen Leitch

Percolation is familiar to anyone who brews coffee, and it helped researchers at the University of California San Diego understand how bacteria communicate with one another over long distances. Communities of bacteria, sometimes called biofilms, aren’t just a clump of bacterial cells. It seems they can send signals to one another with ion channels, promoting the survival of the community and protecting it from attacks. New findings on that communication have been reported in Cell Systems

A huge amount of bacteria lives everywhere in our world, even inside of us. As microbes grow over surfaces, the cells at the edges exhibit more robust growth, since they have the best access to nutrients. The cells at the interior of the mass help keep that edge growth in check so that the entire population stays happy. They do so by sending electrochemical signals to one another, reducing consumption on the edge and getting nutrients passed through to the center.

"This keeps the interior fed well enough and if a chemical attack comes and takes out some of the exterior cells, then the protected interior is able to continue and the whole population can survive," explained Joseph Larkin, a UC San Diego Biological Sciences postdoctoral scholar. "It is essential that the electrochemical signal be consistently transmitted all the way to the biofilm edge because that is the place where the growth must be stopped for the community to reap the most benefit from signaling."

Bacterial communities don’t have infrastructure like neurons for spreading messages. So scientists wanted to know how signals were being shared. Researchers Joseph Larkin and senior author Gürol Süel of UC San Diego worked with Andrew Mugler and Xiaoling Zhai of Purdue University to see if percolation was at work in this process. 

The researchers used fluorescence microscopy to track cells that transmitted a signal and found that those movements lined up with the predictions made using the percolation theory. 

"We're all familiar with how we make coffee through percolation and it's an interesting twist that bacteria appear to use the same concept to accomplish the very complicated task of efficiently relaying an electrochemical signal over very long distances from cell to cell," said Süel.

"It's interesting that these bacteria, which are so-called simple, single-cell organisms, are using a fairly sophisticated strategy to solve this community-level problem," added Larkin. "It's sophisticated enough that we humans are using it to extract oil, for example."

Learn more about biofilms from the following video.

Sources: AAAS/Eurekalert! Via UCSD, Cell Systems

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 05, 2020
Cell & Molecular Biology
Preprint Suggests Sars-CoV-2 Mutation Makes it More Transmissable
MAY 05, 2020
Preprint Suggests Sars-CoV-2 Mutation Makes it More Transmissable
Samples obtained from patients from all over the world have been used to sequence the genomes of the viral strains infec ...
JUN 16, 2020
Microbiology
Dexamethasone Hailed as Effective COVID-19 Treatment
JUN 16, 2020
Dexamethasone Hailed as Effective COVID-19 Treatment
The pandemic virus SARS-CoV-2, which causes COVID-19, has killed more than 438,000 people worldwide since it emerged lat ...
JUN 30, 2020
Plants & Animals
Consequences of Sixth Mass Extinction Threaten Humanity
JUN 30, 2020
Consequences of Sixth Mass Extinction Threaten Humanity
Many scientists have taken note of the rapid decline many of the world species, and several have declared that Earth's s ...
JUL 24, 2020
Microbiology
Ticks Carrying Heartland Virus Found in Illinois
JUL 24, 2020
Ticks Carrying Heartland Virus Found in Illinois
In two counties in Illinois, a pathogen continues its emergence. Researchers have found that Lone Star ticks there are c ...
JUL 27, 2020
Space & Astronomy
Bacteria More Lethal and Antibiotic Resistant in Space
JUL 27, 2020
Bacteria More Lethal and Antibiotic Resistant in Space
Research has shown that bacteria are more lethal and resistant to antibiotics when exposed to microgravity (a lack of gr ...
JUL 27, 2020
Chemistry & Physics
Cobalt-doped titanium-dioxide stops the reproduction of listeria monocytogenes
JUL 27, 2020
Cobalt-doped titanium-dioxide stops the reproduction of listeria monocytogenes
Scientists suggest adding cobalt-doped titanium-dioxide (CoO-TiO2) to foods in order to prevent the spread of listeria, ...
Loading Comments...