JUN 30, 2015 12:48 PM PDT

Vanderbilt Chemists Organize a Microbial Fight Club

WRITTEN BY: Kerry Evans
Bacteria produce a medley of secondary metabolites in response to their environment. Often, these metabolites are used to fend off rival microorganisms, making them ideal antibacterial and anticancer drug candidates. However, many of these metabolites are not produced when bacteria are grown in monoculture. A group of Vanderbilt University chemists solved this problem by organizing a microbial fight club.

Brian Bachmann, Associate Professor of Chemistry, and John McLean, Stevenson Professor of Chemistry, describe their unique approach to drug discovery in the journal ACS Chemical Biology (ACS Chem Biol. 2015 Jun 17). The group co-cultured the soil-dwelling bacterium Nocardiopsis with Escherichia coli, Bacillus subtilis, Rhodococcus wratislaviensis, and Tsukamurella pulmonis.

Vanderbilt University chemists designed a bacterial fight club to discover new drugs.
They looked for secondary metabolites in the co-culture media using ion mobility-mass spectrometry, a technique that sorts molecules based on their size to weight ratio. This approach identified upwards of 2,500 unique molecules from each co-culture. In each case, more metabolites were found in the co-culture than in either individual culture combined, suggesting that unique metabolites were produced when different species interacted.

To identify metabolites that were similar in structure to known antibiotics and anticancer drugs, the researchers developed a "self-organizing metabolomics map". This approach identified a unique metabolite from the Nocardiopsis/Rhodococcus co-culture, a macrolactam type polyketide now named "ciromicin".

This isn't the Bachmann Lab's only creative approach to drug discovery. In collaboration with Hazel Barton, Professor of Microbiology and Geology at the University of Akron, Bachmann looked for novel antibiotics made by cave-dwelling bacteria. One sample from Lechuguilla Cave in New Mexico contained 38 antibiotic compounds, an impressive figure when you consider there are fewer than 100 known antibiotics.

Sources: ACS Chemical Biology, Science Daily, BBC
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
JUL 19, 2018
Microbiology
JUL 19, 2018
Mom's Microbiome has a Big Impact on Kid's Autism Risk
For many years, scientists have been trying to learn more about the causes of autism....
AUG 02, 2018
Microbiology
AUG 02, 2018
As Earth Warms, Soil 'Breathes' Harder
Temperatures are on the rise, and it seems soil will become another factor in how our climate changes....
AUG 14, 2018
Microbiology
AUG 14, 2018
How Ebola Gets Into Cells
Researchers have learned how Ebola gains entry to cells, which can help us stop it....
AUG 24, 2018
Microbiology
AUG 24, 2018
How the E. coli Bacterium Can Benefit Us
Often thought of as a dangerous germ, it seems that E. coli may be playing a helpful role in the uptake of iron....
AUG 31, 2018
Microbiology
AUG 31, 2018
An Ebola Outbreak in the Democratic Republic of Congo
In August, the World Health Organization declared that an Ebola outbreak was happening in the DRC....
SEP 27, 2018
Microbiology
SEP 27, 2018
How Bacterial Cells Take out the Trash
Some types of bacteria create tiny versions of themselves that cannot reproduce - miniature spheres lacking chromosomal DNA that are known as minicells....
Loading Comments...