JUN 30, 2015 12:48 PM PDT

Vanderbilt Chemists Organize a Microbial Fight Club

WRITTEN BY: Kerry Evans
3 35 3547
Bacteria produce a medley of secondary metabolites in response to their environment. Often, these metabolites are used to fend off rival microorganisms, making them ideal antibacterial and anticancer drug candidates. However, many of these metabolites are not produced when bacteria are grown in monoculture. A group of Vanderbilt University chemists solved this problem by organizing a microbial fight club.

Brian Bachmann, Associate Professor of Chemistry, and John McLean, Stevenson Professor of Chemistry, describe their unique approach to drug discovery in the journal ACS Chemical Biology (ACS Chem Biol. 2015 Jun 17). The group co-cultured the soil-dwelling bacterium Nocardiopsis with Escherichia coli, Bacillus subtilis, Rhodococcus wratislaviensis, and Tsukamurella pulmonis.

Vanderbilt University chemists designed a bacterial fight club to discover new drugs.
They looked for secondary metabolites in the co-culture media using ion mobility-mass spectrometry, a technique that sorts molecules based on their size to weight ratio. This approach identified upwards of 2,500 unique molecules from each co-culture. In each case, more metabolites were found in the co-culture than in either individual culture combined, suggesting that unique metabolites were produced when different species interacted.

To identify metabolites that were similar in structure to known antibiotics and anticancer drugs, the researchers developed a "self-organizing metabolomics map". This approach identified a unique metabolite from the Nocardiopsis/Rhodococcus co-culture, a macrolactam type polyketide now named "ciromicin".

This isn't the Bachmann Lab's only creative approach to drug discovery. In collaboration with Hazel Barton, Professor of Microbiology and Geology at the University of Akron, Bachmann looked for novel antibiotics made by cave-dwelling bacteria. One sample from Lechuguilla Cave in New Mexico contained 38 antibiotic compounds, an impressive figure when you consider there are fewer than 100 known antibiotics.

Sources: ACS Chemical Biology, Science Daily, BBC
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
MAY 21, 2018
Microbiology
MAY 21, 2018
Common Antibacterial Chemical may Help Fight Lung Infections
New research has found when triclosan is used with another FDA-approved drug, it can help fight deadly illness.
MAY 22, 2018
Microbiology
MAY 22, 2018
Deadly Bacterium can Hijack Neurons
Strep throat is caused by a common bacterium called Streptococcus pyogenes. That bacterium can also cause flesh-eating disease.
MAY 31, 2018
Microbiology
MAY 31, 2018
Ulcer-causing Microbe Found to Disrupt Mitochondria
Knowing how H. pylori establishes an infection will help develop better treatments for the pathogen.
JUN 07, 2018
Microbiology
JUN 07, 2018
Assessing the Germs on Airplanes
The bacterial community on planes doesn't make for scary headlines.
JUN 08, 2018
Microbiology
JUN 08, 2018
Staph Bacteria can Sustain Infection by Eating Bone
The S. aureus pathogen doesn't only invade bone, it uses it as a snack.
JUL 19, 2018
Cardiology
JUL 19, 2018
HIV Infection Doubles Risk of Heart Disease
Recent study of 150 countries and over 800,000 people shows HIV patients are more than twice as likely to develop Heart Disease than uninfected individuals.
Loading Comments...