DEC 26, 2018 3:39 PM PST

HIV Uses Cell Size to Make a Choice About Its Host's Fate

WRITTEN BY: Carmen Leitch

Human immunodeficiency virus (HIV) is still a global health problem, even though antiretroviral drugs have completely changed outcomes for those that are infected, and have access to treatment. While the drugs have transformed HIV from a death sentence into a manageable disease, they don’t cure it. When HIV infection occurs, the virus targets one type of immune cell for infection - CD4 T-cells. The virus can then cause disease, or it can create a reservoir that lies in wait, evading treatment. New work published in Cell Reports has revealed more about that choice.

Image credit: Pixabay

"Upon infection of a CD4 T-cell, HIV undergoes one of two fates," explained University of Illinois Assistant Professor Roy Dar. "It either integrates into a replicating state, leading to the production of hundreds of infectious virions, or it integrates into a latent state where the provirus lies transcriptionally silent."

Dar noted that scientists have looked for ways to eliminate that latent viral reservoir; it’s able to evade treatment, or become active at any time. If patients don’t adhere to their drug regimen, the reservoir can spring into action and the disease rebounds.

"To date, there is no way to distinguish between uninfected cells and latently infected cells in the body, but such an ability would support existing therapeutic approaches to curing HIV," said Dar, who is associated with the Electrical & Computer Engineering Department and Carl Woese Institute for Genomic Biology on campus.

Dar’s team has previously used a fluorescent tag - GFP to visualize the viral reactivation in T-cells that contain latent HIV infections.

"The method of time-lapse, single-cell imaging allowed monitoring single latent cell reactivation from their silent to their active states by calculating the mean fluorescence of GFP," explained the lead author of the study, Kathrin Bohn-Wippert, a bioengineering postdoctoral researcher.

After identifying reactivated cells, the team measured their size. That allowed the investigators to calculate the mean diameter that was required for reactivation. In a latent population of cells, only large hosts reactivate. The small cells stay latent.

"Our results present a case of passive host-cell dominated viral decision-making, in which the virus is off when the infected cell is small and can only spontaneously reactivate in larger cell sizes," said Dar. "This presents a case of the host cell depicting the right conditions for viral decision-making to occur."

The researchers also found that the transition from latent to active cell depends on the cell cycle. Cells move through various growth stages, which can be controlled with drugs. "We showed that you can use drug treatments to modulate a population of cells in and out of a specific cell cycle state in order to bias their viral reactivation," explained Dar.

This work can now help researchers develop better strategies for diagnosing and treating HIV infection.

Learn more about how researchers are working to cure HIV from the video above by NIAID.


Sources: AAAS/Eurekalert! Via University of Illinois College of Engineering, Cell Reports

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 07, 2021
Space & Astronomy
Did Scientists Just Find Mushrooms on Mars?
MAY 07, 2021
Did Scientists Just Find Mushrooms on Mars?
While experts agree that most life on Earth would not be able to survive on Mars, NASA researchers have previously sugge ...
MAY 16, 2021
Microbiology
Organic Meat is Less Likely to Harbor Nasty Pathogens
MAY 16, 2021
Organic Meat is Less Likely to Harbor Nasty Pathogens
Organic food has been touted as healthier, but that's been debated. While meat that is produced organically now has to m ...
MAY 25, 2021
Microbiology
Concern Grows About Emerging H5N8 Flu Virus
MAY 25, 2021
Concern Grows About Emerging H5N8 Flu Virus
Though suspected outbreaks have been documented since 1878, the first confirmed outbreak of bird flu, a highly pathogeni ...
JUN 17, 2021
Microbiology
Malaria Pathogen Caught Invading Red Blood Cells
JUN 17, 2021
Malaria Pathogen Caught Invading Red Blood Cells
Mosquitoes are the world's deadliest animals (after humans) and they transmit malaria, which kills about 400,000 people ...
JUL 11, 2021
Drug Discovery & Development
Antibiotic Resistance May Be Passed Between Dogs and Owners
JUL 11, 2021
Antibiotic Resistance May Be Passed Between Dogs and Owners
Household pets may act as a reservoir for mcr-1, a gene that is resistant to a last-resort antibiotic, colistin. The fin ...
JUL 12, 2021
Cell & Molecular Biology
A Molecule From the Gut Microbiome May Fight Tumors
JUL 12, 2021
A Molecule From the Gut Microbiome May Fight Tumors
The more we learn abut the gut microbiome, the more it seems that the microorganisms in our gastrointestinal tracts can ...
Loading Comments...