JAN 16, 2019 11:36 AM PST

Identifying Microbes That can Generate Electricity

WRITTEN BY: Carmen Leitch

Our world is full of microbial life, and many of those tiny organisms have found ways to live in some of the planet’s most extreme environments. Some of those places completely lack oxygen, or typical nutrients, producing microbes with unusual abilities. For example, researchers have identified bacteria that can ingest and release charged particles as a way of breathing. These electricity-producing microbes could be helpful to humans as water purifiers or mini power plants if scientists can identify the best candidates, and grow them successfully.

To that end, researchers at the Massachusetts Institute of Technology (MIT) have created a way to assess polarizability, the ability of a bacterium to generate electricity. Such microbes move electrons across the membrane that surrounds their cells, which is known as extracellular electron transfer (EET).  This work has been reported in Science Advances.

"The vision is to pick out those strongest candidates to do the desirable tasks that humans want the cells to do," explained Qianru Wang, a postdoctoral fellow in MIT's Department of Mechanical Engineering.

"There is recent work suggesting there might be a much broader range of bacteria that have [electricity-producing] properties," noted Cullen Buie, associate professor of mechanical engineering at MIT. "Thus, a tool that allows you to probe those organisms could be much more important than we thought. It's not just a small handful of microbes that can do this."

Current methods for assessing polarizability require growing huge amounts of the bacterium in question and measuring EET protein activity. The MIT scientists want to speed the process up by using microfluidic chips, which contain tiny channels that bacteria can flow through. When a voltage is applied to these channels, which have an hourglass in the middle, a gradient in the resulting electric field is generated because of the pinch in the middle. In a phenomenon called dielectrophoresis, the gradient can then push the cells, repelling or stopping them in the channel 

Dielectrophoresis has already been used by Buie and others as a way to sort bacteria according to its characteristics. "Basically, people were using dielectrophoresis to separate bacteria that were as different as, say, a frog from a bird, whereas we're trying to distinguish between frog siblings -- tinier differences," Wang said.

The scientists used their microfluidic tool to compare different bacterial strains, some of which had known electrochemical properties. They confirmed that the electrical field in the device could push microbial cells into the pinch in the channels, and the stronger field could then push against that motion, trapping the bacterium in place.

Different voltages were needed to trap different bacteria. The scientists noted the voltage required to trap a microbe and the cell's sizes. Computational tools were then used to find out how easy it was for cells to form electric dipoles after the application of an external electric field.

Wang found that more electrochemically active microbes usually had higher polarizability. "We have the necessary evidence to see that there's a strong correlation between polarizability and electrochemical activity," Wang explained. "In fact, polarizability might be something we could use as a proxy to select microorganisms with high electrochemical activity. If the same trend of correlation stands for those newer strains, then this technique can have a broader application, in clean energy generation, bioremediation, and biofuels production," Wang concluded.


Sources: AAAS/Eurekalert! Via MIT, Science Advances

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 22, 2020
Immunology
Scientists Engineer Custom Antiviral Receptors to Fight COVID-19
APR 22, 2020
Scientists Engineer Custom Antiviral Receptors to Fight COVID-19
The best offense may be a good defense in the fight against COVID-19. Researchers from the Duke-NUS Medical School are e ...
MAY 11, 2020
Microbiology
Bacteria Can Tumble Their Way Out of Traps
MAY 11, 2020
Bacteria Can Tumble Their Way Out of Traps
We share the world with vast numbers of microbes, many of which are able to move around freely in the environment. Most, ...
MAY 18, 2020
Microbiology
An Antibody Against SARS May Neutralize SARS-CoV-2
MAY 18, 2020
An Antibody Against SARS May Neutralize SARS-CoV-2
SARS-CoV caused an outbreak of SARS in 2003. Samples collected from those patients back then may help us against SARS-Co ...
JUN 21, 2020
Microbiology
Poor Oral Hygiene May Worsen Gut Inflammation
JUN 21, 2020
Poor Oral Hygiene May Worsen Gut Inflammation
Good dental hygiene benefits more than just the teeth and gums; researchers have found that poor oral health can contrib ...
JUL 07, 2020
Cell & Molecular Biology
Anticancer Compound Found in Marine Bacteria
JUL 07, 2020
Anticancer Compound Found in Marine Bacteria
Bacteria live in symbiosis with many animals in the world. These tiny single-celled creatures often play crucial roles i ...
JUL 07, 2020
Microbiology
Why Some Are Naturally Better at Preventing Urinary Tract Infections
JUL 07, 2020
Why Some Are Naturally Better at Preventing Urinary Tract Infections
Urinary tract infections can be very painful and can cause nausea, chills, and fever. A pathogenic strain of E. coli is ...
Loading Comments...