JUL 15, 2015 02:59 PM PDT

Diversity of Gut Microbiota Predicts Resistance to Clostridium difficile

Clostridium difficile is most commonly referred to as a healthcare-associated infection (HAI), with at risk-populations including older adults who are currently receiving medical care or who are taking antibiotics. According to the CDC, in 2011 there were approximately 50,000 infections caused by C. difficile. Of the persons infected 29,000 died within 30 days of their initial diagnosis. C. difficile is a type of spore-forming bacteria that produces two types of enterotoxins. It accounts for 15-25 % antibiotic associated diarrhea (AAD). C. difficile infection can also result in pseudomembranous colitis (PMC), toxic megacolon, perforations of the colon, sepsis and sometimes death. It is currently regarded as the leading cause of hospital-acquired infections in the US.
Clostridium difficile is the leading cause of hospital acquired infections in the United States.
Researchers at the University Of Maryland School Of Medicine have recently discovered that certain species present in the gut may help protect colonization by C. difficile. When the normal microflora in the gut are wiped out by antibiotics, C. difficile has the opportunity to colonize the gut and produce enterotoxins, which is why antibiotic treatment is considered a major risk factor for acquiring a C. difficile infection. In their study, researchers administered one of 7 different antibiotics in mice order to alter the indigenous bacteria present in the gut. Following a 24 h recovery period, mice were challenged with C. difficile spores. Fecal samples from the treated mice were collected on the day of the C. difficile challenge as well as the day after the challenge. Fecal samples were processed to enumerate aerobic as well as anaerobic bacteria present in the samples followed by DNA sequencing. The research team used relative abundance data to build a machine learning regression model to predict the levels of C. difficile that could be found in the fecal samples 24 h following the challenge.

Bacterial populations including Porphyromonadaceae, Lachnospiraceae, Lactobacillus, and Alistipes were reported to be protective against C. difficile colonization and Escherichia and Streptococcus species were found to help enhance C. difficile colonization. One species, Akkermansia, was found to have a strong dependency on other members of the microbiota. The authors of the study concluded that individual bacterial populations do not drive colonization resistance to C. difficile. Instead, authors believe that different bacterial species present in the gut work together to mediate colonization resistance against C. difficile.

The findings of this study could lead to better methods to assess the risk of a particular patient to acquire a hospital acquired infection, such as C. difficile. This would require sequencing of the patient's gut microbiota to determine what bacterial species are missing and added back via probiotic treatment. This method could be used as a pre-screening preventative, similar to those used to screen for MRSA in hospital settings upon admission of a new patient.

Sources: CDC, American Society for Microbiology
About the Author
  • I am a postdoctoral researcher with interests in pre-harvest microbial food safety, nonthermal food processing technologies, zoonotic pathogens, and plant-microbe interactions. My current research projects involve the optimization of novel food processing technologies to reduce the number of foodborne pathogens on fresh produce. I am a food geek!
You May Also Like
NOV 14, 2019
Microbiology
NOV 14, 2019
Picturing a New Kind of Antibiotic
Scientists have deciphered the X-ray crystal structure of an enzyme that generates a unique broad spectrum antibiotic called obafluorin....
NOV 14, 2019
Genetics & Genomics
NOV 14, 2019
A Pathogen That Has Evolved to Spread in Hospitals
Clostridium difficile is the primary cause of infections that are acquired in hospital settings; it causes diarrhea and intestinal inflammation....
NOV 14, 2019
Microbiology
NOV 14, 2019
The Long Evolutionary History of Antibiotics and Resistance
The world is full of bacteria that have to share the world with myriad species, and often have to live in competition with other microbes....
NOV 14, 2019
Health & Medicine
NOV 14, 2019
Effectiveness of Different Hand-Drying Methods on Reducing Bacteria on Washed Hands
Hand hygiene is vital to prevent the spread of infectious organisms, especially in healthcare settings. It is well-documented in the literature about the i...
NOV 14, 2019
Health & Medicine
NOV 14, 2019
Are Washing Machines a Reservoir for Multidrug Resistant Pathogens?
Multidrug-resistant bacteria are frequently found in hospitals and long-term nursing facilities causing one of the largest public health concerns worldwide...
NOV 14, 2019
Microbiology
NOV 14, 2019
Drug-Resistant Microbes Found in Many Raw Pet Foods
Raw dog food is marketed as a diet that mimics the food of dog's ancestors. But it may pose a serious risk to both pets and their human companions....
Loading Comments...