JUL 15, 2015 5:39 PM PDT

Under Construction: Genome Remodeling Makes Group A Streptococcus More Virulent

WRITTEN BY: Kerry Evans
Streptococcus pyogenes, also known as group A streptococcus (GAS), is a gram positive bacterium best known for causing pharyngitis ("strep throat"). In some cases, however, GAS causes more severe diseases such as glomerulonephritis, acute rheumatic fever, and even necrotizing fasciitis (the ever provocative "flesh eating" bacteria).

Genome remodeling made group A streptococcus emm89 more virulent.
Recently, one strain of GAS, termed emm89, has proven itself particularly successful at infecting patients across the UK and Canada. Between 1998 and 2009, clinicians at Imperial College Healthcare NHS Trust in London noticed an increase in infections caused by emm89. Curiously, this strain is not antibiotic resistant, suggesting some other mechanism by which emm89 causes invasive disease.

Researchers at Imperial College London wanted to know if specific genetic changes in emm89 contributed to its increased virulence. To answer this question, Junior Research Fellow Claire Turner and colleagues sequenced the genomes of both invasive and non-invasive emm89 isolates. They report their findings in the most recent issue of the journal mBio.

The group sequenced the genomes of emm89 samples isolated from patients between 2004 and 2013. They identified six regions in which homologous recombination had occurred when compared to a particularly virulent emm89 strain (that caused necrotizing fasciitis). The most surprising change in these invasive emm89 strains was that they lacked a capsule, the outermost layer of the cell. "The fact that it had lost its capsule was a complete surprise", says Turner, "because it was believed that the capsule was essential for group A streptococcus to cause invasive disease". Cells lacking capsule tend to stick to surfaces better, which could be one reason emm89 is more successful at infecting humans.

The invasive emm89 isolates also produced more streptolysin O and NAD(+)-glycohydrolase (NADase). Streptolysin O creates pores in host cells through which NADase enters, eventually resulting in cell death.

These findings should motivate healthcare professionals to assess the selective pressures we place on the microbes around us. According to Shiranee Sriiskanda, lead investigator of the study, "We know very little about how group A streptococcus is transmitted from person to person. We need to look into this more deeply and think about better ways to prevent transmission".

Sources: mBio ("Emergence of a New Highly Successful Acapsular Group A Streptococcus Clade of Genotype emm89 in the United Kingdom" DOI:10.1128/mBio.00622-15), Science Daily, CDC
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
JUN 22, 2020
Microbiology
A Human Gut Microbe Can Help Maintain Healthy Cholesterol Levels
JUN 22, 2020
A Human Gut Microbe Can Help Maintain Healthy Cholesterol Levels
The world is full of microorganisms, and our bodies are one of the many places they have colonized. These gut microbes c ...
JUN 23, 2020
Genetics & Genomics
An Organism That Purposefully Mutates Its Own DNA
JUN 23, 2020
An Organism That Purposefully Mutates Its Own DNA
While mutations can arise in the genome and have little consequence, sometimes they are beneficial and selected to remai ...
JUN 25, 2020
Cell & Molecular Biology
Peptide Made by Marine Worms Can Destroy Multidrug-Resistant Bacteria
JUN 25, 2020
Peptide Made by Marine Worms Can Destroy Multidrug-Resistant Bacteria
Drug-resistant bacteria pose a serious threat to public health, and scientists have been searching for new antibiotics t ...
JUL 15, 2020
Microbiology
A Common Drug Could Help Reduce the Risk of COVID-19 Infections
JUL 15, 2020
A Common Drug Could Help Reduce the Risk of COVID-19 Infections
Heparin is a very common drug that's been approved as an anticoagulant since 1992. Researchers have now found that the m ...
JUL 13, 2020
Drug Discovery & Development
Potential Therapy for The Dengue Virus
JUL 13, 2020
Potential Therapy for The Dengue Virus
Researchers at the University of Texas Medical Branch at Galveston have uncovered a new antiviral mechanism for the new ...
JUL 22, 2020
Infographics
The Science of Sourdough
JUL 22, 2020
The Science of Sourdough
During the coronavirus stay-at-home order, many people have taken up the art of making sourdough bread and have learned ...
Loading Comments...