FEB 05, 2019 11:02 AM PST

Time-lapse Microscopy Reveals More About the Microbial Life Cycle

WRITTEN BY: Carmen Leitch

Bacteria have to be able to defend themselves from other microbes and can do so with antibiotics. That’s made the soil-dwelling strains of Streptomyces a source of many antibiotics. To make those antibiotics, the life cycle of the Streptomyces microbe has to be carefully controlled and end in a process called sporulation, in which spores are formed. That enables microbes to enter a dormant state in which they can survive dangerous conditions. Now researchers at the John Innes Centre have discovered a critical protein that ensures that sporulation events are timed correctly.

They found the DNA-binding protein that can put the brakes on the Streptomyces life cycle is called BldC. Reported in mBio, this protein may help scientists ramp up the production of useful antibiotics. 

In this work, the researchers showed that when the gene encoding for BldC is gone, sporulation starts too soon. To learn more about how BldC regulates that timing, they turned to Chromatin-Immunoprecipitation-sequencing. That showed exactly where BldC was binding to the Streptomyces chromosome. Then, they assessed which genes were active in the microbe by sequencing its RNA.

"This approach showed that the BldC brake works by keeping important genes required for sporulation switched off at a time when Streptomyces wants to grow non-reproductively," explained the first author of the report Dr. Matt Bush.

"To our surprise, these studies showed that as well as switching some genes off, BldC can also switch other genes on. Because BldC binds at many positions on the chromosome, one possibility is that it also serves to organize the chromosome's structure - it's a nucleoid-associated protein."

The researchers employed a strain of the bacterium called Streptomyces venezuelae, which can sporulate in liquid as well as on agar plates, unlike other versions. That enabled the researchers to get a good look at the processes inside.

"This means we can use time-lapse fluorescence microscopy to make movies of Streptomyces undergoing the entire spore-to-spore life-cycle in real-time. We can put a fluorescent "tag" on a protein in the cell to see where it goes and when. Here we put a tag on the "FtsZ" protein that is required for the cell division event that produces spores." said Bush.


Sources: AAAS/Eurekalert! via John Innes Centre, mBio

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 29, 2018
Videos
DEC 29, 2018
The Links Between the Gut Microbiome and the Brain
The gut microbiome is a very complex thing that requires research combining many fields of study....
JAN 10, 2019
Health & Medicine
JAN 10, 2019
Skin with hair or without hair
study identified that the endogenous secreted Wnt inhibitor DKK2 suppresses the hair follicle development...
JAN 09, 2019
Microbiology
JAN 09, 2019
Space Bacteria Are Adapting to Survive
Microorganisms that end up on the International Space Station just do their best to survive, researchers have found....
JAN 24, 2019
Technology
JAN 24, 2019
Computer Program Advances Food Safety Measures
In a study published in Scientific Advances, Researchers at Cornell University created an innovative computer program known as Environmental Monitoring Wit...
FEB 15, 2019
Microbiology
FEB 15, 2019
The Gut Microbiome May Play a Role in Schizophrenia
The microbes living in our gastrointestinal tract have been connected to many health problems, including mental disorders....
FEB 23, 2019
Videos
FEB 23, 2019
These food "facts" are in fact just myths
Let's go ahead and bust some of these food myths. Take the idea that wooden cutting boards accumulate dangerous bacteria and can, therefore, ...
Loading Comments...