MAR 27, 2019 01:02 PM PDT

Probiotics Shown to Evolve in the Guts of Mice

WRITTEN BY: Carmen Leitch

Probiotics, live bacteria that can be ingested, are easily available and have been promoted to consumers. Researchers at the Washington University School of Medicine in St. Louis have now found that probiotics are able to evolve once they’ve gotten into the body. That can not only reduce their efficacy but can make them harmful.

The work, which was done in mice using an anti-diarrheal probiotic sold in Europe, has been reported in Cell Host & Microbe. It indicates that probiotics may not be good for everyone; probiotics might be therapeutic for some people and detrimental for others. After mice were exposed to the probiotic microbes, which took up residence in the intestines for several weeks, it was found that some probiotics gained the ability to destroy the lining that protects the intestine. 

“If we’re going to use living things as medicines, we need to recognize that they’re going to adapt, and that means that what you put in your body is not necessarily what’s going to be there even a couple hours later,” noted the senior author of the report Gautam Dantas, Ph.D.., a professor of pathology and immunology, of molecular microbiology, and of biomedical engineering. “There is no microbe out there that is immune to evolution. This isn’t a reason not to develop probiotic-based therapies, but it is a reason to make sure we understand how they change and under what conditions.”

The gut microbiome is a community of microbes that resides in everyone’s gastrointestinal tract. An increasing body of research evidence is showing that it is closely related to our health in many ways. Maintaining a diverse group of healthy microbes appears to be essential to our well-being. Changes in the microbiome have been linked to various diseases, and scientists are increasingly interested in how we can manipulate the microbiome therapeutically.

Probiotics are currently being engineered to treat disorders such as inflammatory bowel disease, necrotizing enterocolitis - an intestinal infection that can threaten the lives of premature babies, and phenylketonuria (PKU) - a metabolic disease. Although these treatments would be thoroughly evaluated before they are used in the clinic, evaluating a living therapy that can change inside the body may pose challenges to that evaluation.

In this work, the researchers used four groups of mice; one was free of bacteria, one had a limited microbiome to mimic an unhealthy gut, another mimicked a healthy microbiome, and the last group had a normal microbiome but had also received antibiotics. The mice got the probiotic - E. coli Nissle 1917, as well as various diets. They found that some microbes had undergone genetic changes while in the mice; many genes involved in stress response had adapted, probably because of the environmental conditions in the gut. But that wasn't always the case.

“In a healthy, high-diversity background we didn’t capture a lot of adaptation, maybe because this is the background that Nissle is used to,” Ferreiro said. “But you have to remember that quite often we wouldn’t be using probiotics in people with a healthy microbiome. We’d be using them in sick people who have a low-diversity, unhealthy microbiome. And that seems to be the condition when the probiotic is most likely to evolve.”

The scientists tried the Nissle as a potential PKU treatment, by engineering the bacteria to carry a gene that would enable them to break down phenylalanine (PKU patients are unable to break the molecule down and it builds up, causing neurological damage). The bioengineered bacteria was given to a PKU mouse model, and the following day, phenylalanine levels in some of the mice were reduced. A week after treatment, there weren’t any major genetic changes in the Nissle, which shows it may be a useful probiotic.

“Evolution is a given. Everything is going to evolve,” Dantas said. “We don’t need to be scared of it. We can use the principles of evolution to design a better therapeutic that is carefully tailored to the people who need it. This is an opportunity, not a problem.”


Sources: Phys.org via WUSTL, Cell Host & Microbe

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 18, 2019
Microbiology
JUN 18, 2019
How the 2015-2016 El Niño Led to an Increase in Disease
This work shows how weather data can be used to prevent future disease outbreaks from happening....
JUN 18, 2019
Microbiology
JUN 18, 2019
THOR - Hammering Out a Model for the Microbiome
As our understanding of microbial communities grows, scientists are also finding the gaps in our knowledge, and are looking for ways to fill them....
JUN 18, 2019
Microbiology
JUN 18, 2019
Bioluminescent Bacteria Can Change Gene Expression in Its Squid Host
The Hawaiian bobtail squid plays host to bioluminescent bacteria, and researchers learned more about how these creatures can impact each other....
JUN 18, 2019
Microbiology
JUN 18, 2019
Gut Microbes may Link Stress and Autoimmune Disease
Stress can have a detrimental effect on our health, and appears to contribute to the development of autoimmune diseases....
JUN 18, 2019
Health & Medicine
JUN 18, 2019
Microbiology
JUN 18, 2019
Towards a Better Understanding of How the Microbiome Functions
While we're learning more about how the microbiome is linked to disease, there are many gaps in our knowledge that scientists are trying to fill....
Loading Comments...