APR 17, 2019 05:23 PM PDT

Using Engineered Bacteria to Rapidly Evaluate Therapeutics

WRITTEN BY: Carmen Leitch

Scientists are using genetic tools to engineer bacteria in many ways. These new microbes are able to mimic or sense disease states, so that researchers can use them to study illness, like infectious pathogens or cancer. These genetic techniques that program bacterial cell behavior can also be used to create circuits that not only act as sensors but are also responders, for example, creating therapeutic molecules in certain situations. These engineered microbes can also be used to test treatments or act as delivery systems, like a kind of living medicine. 

Now, scientists from Columbia Engineering report a method for using programmed bacteria as a kind of miniaturized tissue that can model tumors. The technique, called "bacteria spheroids co-culture," or BSCC, has been reported in the Proceedings of the National Academy of Sciences (PNAS); it is a high-speed method for rapidly evaluating therapeutics.

The image shows engineered bacteria (green) in tumor spheroids cultured in a multi-well plate. / Credit: Tetsuhiro Harimoto/Columbia Engineering

"We're very excited at how efficient BSCC is and think it will really accelerate engineered bacterial therapy for clinical use," said the research leader Tal Danino, an assistant professor of biomedical engineering. "By combining automation and robotics technology, BSCC can test a large library of therapies to discover effective treatments. And because BSCC is so broadly applicable, we can modify the system to test human samples as well as other diseases. For example, it will help us personalize medical treatments by creating a patient's cancer in a dish, and rapidly identify the best therapy for the specific individual."

The microenvironment of a tumor impairs the local immune response, and bacteria that would be killed if it was elsewhere in the body is able to grow in the tumor. The researchers used that knowledge; they used an antimicrobial agent, an antibiotic called gentamicin, and cultured bacteria in spheroids, mimicking tumors in the body. With the BSCC technique, they were able to quickly assess many different programmed anticancer bacterial therapies like genetic circuits or engineered microbes.

Bacteria colonize multicellular spheroids in vitro where they are screened for growth, circuit dynamics, and therapeutic efficacy and then are validated in mouse tumor models. / Credit: Tetsuhiro Harimoto/Columbia Engineering

"We used 3D multicellular spheroids because they recapitulate conditions found in the human body, such as oxygen and nutrient gradients; these can't be made in a traditional 2D monolayer cell culture," said the lead author of the report Tetsuhiro Harimoto, a graduate candidate working in Danino's lab. "In addition, the 3D spheroid provides bacteria with enough space to live in its core, in much the same way that bacteria colonize tumors in the body, also something we can't do in the 2D monolayer culture. Plus, it's simple to make large numbers of 3D spheroids and adapt them for high-throughput screening."

The team was able to use BSCC as a high-throughput way to characterize batches of programmed bacteria and identify those that show the most promise. They found a novel bacterial toxin called theta toxin, which has significant impacts on colon cancer when combined with a delivery circuit that uses attenuated Salmonella Typhimurium. Anticancer therapeutic efficacy was also improved by some bacterial therapeutics they tested.

The scientists are hopeful that this work will have additional applications. They would like to use BSCC for microbial therapeutics that apply to other diseases, like infectious illnesses and gastrointestinal disorders. 

Sources: AAAS/Eurekalert! via Columbia University School of Engineering and Applied Science, PNAS

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 11, 2019
Microbiology
DEC 11, 2019
A Quick Squirt of Sanitizer May Not be Enough to Protect Against the Flu
Alcohol-based hand sanitizers are thought to provide protection from pathogens that spread in saliva and mucus. But is that true?...
DEC 11, 2019
Microbiology
DEC 11, 2019
Rotavirus Infection Can be Prevented or Cured by a Gut Microbe
We share the world and our bodies with microorganisms, and the ones that live in our gut exert a significant impact on our physiology....
DEC 11, 2019
Clinical & Molecular DX
DEC 11, 2019
Meningitis and Encephalitis: Testing & Diagnosis Strategies for Effective Treatment
Meningitis is an inflammation of the membranes surrounding the brain (meninges) and spinal cord. Encephalitis, on the other hand, refers to inflammation of...
DEC 11, 2019
Microbiology
DEC 11, 2019
The Mechanism of Lysostaphin, a MRSA-Killing Enzyme, is Revealed
This study can help inform the development of new treatments for antibiotic-resistant microbes....
DEC 11, 2019
Cell & Molecular Biology
DEC 11, 2019
Insulin Can Help Stop the Spread of Viruses by Triggering a Mosquito Immune Pathway
There are no treatments for dengue, West Nile and Zika viruses, but researchers may have found a way to reduce the chance that they will spread....
DEC 11, 2019
Immunology
DEC 11, 2019
Playing "Tag" with the Immune System
Human cells employ an intricate tagging system to manage protein activity in the body. By “tagging” a protein with a certain modification, cell...
Loading Comments...