SEP 30, 2019 07:31 PM PDT

Rethinking the Way Viruses Are Classified

WRITTEN BY: Carmen Leitch

Scientists may have to start reclassifying viruses, according to new work reported in Nature Communications. The structure of a virus was thought to be critical to their classification, but in reality, they have many more patterns in their architecture than we knew. This work may also change our understanding of how viruses form, evolve, and cause infection. Scientists may now find new ways to target different viral shapes with vaccines.

The new mathematical framework changes the way we understand the structure of viruses such as Herpes. / Credit: Prof Reidun Twarock, University of York

High-resolution images obtained in the 1950s and 60s revealed that viruses are contained within a protective cell called a capsid. Capsids are made of multiple copies of the same protein and were thought to have a shape like a 20-sided die; they were thought to have either helical or icosahedral shapes, for the most part. Capsids have different configurations to contain viral genomes of different sizes.

Now, theoretical biophysicist Antoni Luqueof San Diego University and mathematical biologist Reidun Twarock, of the University of York have found that while cryo-electron microscopy produced high-quality structural images of viruses, the math that described their architecture wasn’t outlined. Thus, many viruses have been misclassified, including commonly known viruses like Zika and Herpes simplex.

"We discovered six new ways in which proteins can organize to form icosahedral capsid shells," Luque said. "So, many viruses don't adopt only the two broadly understood capsid architectures. There are now at least eight ways in which their icosahedral capsids could be designed."

The researchers showed that viruses with the same structural lineage because their capsids are composed of the same protein take on a consistent icosahedral architecture. This information can now be used to classify viral structures in a different way, and reveal the evolutionary links between different viruses.

"We can use this discovery to target both the assembly and stability of the capsid, to either prevent the formation of the virus when it infects the host cell, or break it apart after it's formed," Luque said. "This could facilitate the characterization and identification of antiviral targets for viruses sharing the same icosahedral layout."

Viruses that were once outliers can now be accommodated by this classification system. Common geometric patterns shared by evolutionary distant but related viruses will now be identified and can help predict viral capsid architectures.

Twarock noted that these novel blueprints can provide "a new perspective on viral evolution, suggesting novel routes in which larger and more complex viruses may have evolved from simple ones at evolutionary timescales."

"This study introduces a more general framework than the classic Caspar-Klug construction. It is based on the conservation of the local vertices formed by the proteins that interact in the capsid," Luque explained. "This approach led to the discovery of six new types of icosahedral capsid layouts, while recovering the two classical layouts from Caspar-Klug based on Goldberg and geodesic polyhedra."

This work may also help inspire new ideas in architecture and design.

In these videos, different viral capsids are illustrated.


Sources: San Diego State University, AAAS/Eurekalert! via University of York, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
DEC 10, 2019
Health & Medicine
DEC 10, 2019
Acute Flaccid Myelitis and Its Association With Enterovirus D68
Acute flaccid myelitis (AFM), a polio-like infection, caught the attention of physicians in the U.S. during late summer and early fall in 2014. The outbrea...
DEC 10, 2019
Cell & Molecular Biology
DEC 10, 2019
Why TB and HIV Occur Together So Often
Tuberculosis (TB) is among the world’s leading causes of death, and is the primary cause of death in people who are HIV-positive....
DEC 10, 2019
Cell & Molecular Biology
DEC 10, 2019
Researchers Discover a Cause of Antibiotic Resistance
For years, people have relied on antibiotics to cure bacterial infections, and many of those antibiotics are now becoming less effective....
DEC 10, 2019
Microbiology
DEC 10, 2019
Raising Awareness of Valley Fever
Valley fever primarily occurs in Arizona and California, and infects around 10,000 people every year....
DEC 10, 2019
Cancer
DEC 10, 2019
How HPV might actually defend against skin cancer
New research from scientists at Massachusetts General Hospital features findings that suggest that immunity to certain strains of HPV (human papillomavirus...
DEC 10, 2019
Clinical & Molecular DX
DEC 10, 2019
Catching drug-resistant HIV mutants with next generation sequencing
Human immunodeficiency virus (HIV)-positive individuals are treated with antiretroviral therapies to reduce the amount of circulating virus, restore their...
Loading Comments...