SEP 30, 2019 7:31 PM PDT

Rethinking the Way Viruses Are Classified

WRITTEN BY: Carmen Leitch

Scientists may have to start reclassifying viruses, according to new work reported in Nature Communications. The structure of a virus was thought to be critical to their classification, but in reality, they have many more patterns in their architecture than we knew. This work may also change our understanding of how viruses form, evolve, and cause infection. Scientists may now find new ways to target different viral shapes with vaccines.

The new mathematical framework changes the way we understand the structure of viruses such as Herpes. / Credit: Prof Reidun Twarock, University of York

High-resolution images obtained in the 1950s and 60s revealed that viruses are contained within a protective cell called a capsid. Capsids are made of multiple copies of the same protein and were thought to have a shape like a 20-sided die; they were thought to have either helical or icosahedral shapes, for the most part. Capsids have different configurations to contain viral genomes of different sizes.

Now, theoretical biophysicist Antoni Luqueof San Diego University and mathematical biologist Reidun Twarock, of the University of York have found that while cryo-electron microscopy produced high-quality structural images of viruses, the math that described their architecture wasn’t outlined. Thus, many viruses have been misclassified, including commonly known viruses like Zika and Herpes simplex.

"We discovered six new ways in which proteins can organize to form icosahedral capsid shells," Luque said. "So, many viruses don't adopt only the two broadly understood capsid architectures. There are now at least eight ways in which their icosahedral capsids could be designed."

The researchers showed that viruses with the same structural lineage because their capsids are composed of the same protein take on a consistent icosahedral architecture. This information can now be used to classify viral structures in a different way, and reveal the evolutionary links between different viruses.

"We can use this discovery to target both the assembly and stability of the capsid, to either prevent the formation of the virus when it infects the host cell, or break it apart after it's formed," Luque said. "This could facilitate the characterization and identification of antiviral targets for viruses sharing the same icosahedral layout."

Viruses that were once outliers can now be accommodated by this classification system. Common geometric patterns shared by evolutionary distant but related viruses will now be identified and can help predict viral capsid architectures.

Twarock noted that these novel blueprints can provide "a new perspective on viral evolution, suggesting novel routes in which larger and more complex viruses may have evolved from simple ones at evolutionary timescales."

"This study introduces a more general framework than the classic Caspar-Klug construction. It is based on the conservation of the local vertices formed by the proteins that interact in the capsid," Luque explained. "This approach led to the discovery of six new types of icosahedral capsid layouts, while recovering the two classical layouts from Caspar-Klug based on Goldberg and geodesic polyhedra."

This work may also help inspire new ideas in architecture and design.

In these videos, different viral capsids are illustrated.


Sources: San Diego State University, AAAS/Eurekalert! via University of York, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 28, 2020
Microbiology
The Flu Vaccine Will Not Increase the Risk of COVID-19
SEP 28, 2020
The Flu Vaccine Will Not Increase the Risk of COVID-19
Scientists and clinicians want people to get their flu shots this year, especially because of the ongoing pandemic.
SEP 30, 2020
Microbiology
Bringing Attention to a Neglected Disease
SEP 30, 2020
Bringing Attention to a Neglected Disease
Schistosomiasis doesn't get much research attention, but it affects around 240 million people around the world, killing ...
OCT 01, 2020
Microbiology
Investigating the Origins of a Cholera Epidemic
OCT 01, 2020
Investigating the Origins of a Cholera Epidemic
Cholera is an intestinal infection caused by Vibrio cholerae. Cholera has been a scourge throughout human history, and i ...
OCT 18, 2020
Microbiology
Mouth Microbes Play a Role in Oral Cancer Development
OCT 18, 2020
Mouth Microbes Play a Role in Oral Cancer Development
Oral hygiene is not only important for keeping teeth and gums healthy; it can also affect a person's health in general.
NOV 02, 2020
Microbiology
A Bacterial Virus Can Help Salmonella Spread
NOV 02, 2020
A Bacterial Virus Can Help Salmonella Spread
The Salmonella bacterium is to blame fora lot of foodborne infections, many of which cause only mild illness, though oth ...
NOV 05, 2020
Clinical & Molecular DX
Painless Microneedle Patch Diagnoses Malaria in Minutes
NOV 05, 2020
Painless Microneedle Patch Diagnoses Malaria in Minutes
It looks like a Band-Aid — a small, adhesive patch that is applied directly to the skin. This simple, low-cost dia ...
Loading Comments...