SEP 30, 2019 7:31 PM PDT

Rethinking the Way Viruses Are Classified

WRITTEN BY: Carmen Leitch

Scientists may have to start reclassifying viruses, according to new work reported in Nature Communications. The structure of a virus was thought to be critical to their classification, but in reality, they have many more patterns in their architecture than we knew. This work may also change our understanding of how viruses form, evolve, and cause infection. Scientists may now find new ways to target different viral shapes with vaccines.

The new mathematical framework changes the way we understand the structure of viruses such as Herpes. / Credit: Prof Reidun Twarock, University of York

High-resolution images obtained in the 1950s and 60s revealed that viruses are contained within a protective cell called a capsid. Capsids are made of multiple copies of the same protein and were thought to have a shape like a 20-sided die; they were thought to have either helical or icosahedral shapes, for the most part. Capsids have different configurations to contain viral genomes of different sizes.

Now, theoretical biophysicist Antoni Luqueof San Diego University and mathematical biologist Reidun Twarock, of the University of York have found that while cryo-electron microscopy produced high-quality structural images of viruses, the math that described their architecture wasn’t outlined. Thus, many viruses have been misclassified, including commonly known viruses like Zika and Herpes simplex.

"We discovered six new ways in which proteins can organize to form icosahedral capsid shells," Luque said. "So, many viruses don't adopt only the two broadly understood capsid architectures. There are now at least eight ways in which their icosahedral capsids could be designed."

The researchers showed that viruses with the same structural lineage because their capsids are composed of the same protein take on a consistent icosahedral architecture. This information can now be used to classify viral structures in a different way, and reveal the evolutionary links between different viruses.

"We can use this discovery to target both the assembly and stability of the capsid, to either prevent the formation of the virus when it infects the host cell, or break it apart after it's formed," Luque said. "This could facilitate the characterization and identification of antiviral targets for viruses sharing the same icosahedral layout."

Viruses that were once outliers can now be accommodated by this classification system. Common geometric patterns shared by evolutionary distant but related viruses will now be identified and can help predict viral capsid architectures.

Twarock noted that these novel blueprints can provide "a new perspective on viral evolution, suggesting novel routes in which larger and more complex viruses may have evolved from simple ones at evolutionary timescales."

"This study introduces a more general framework than the classic Caspar-Klug construction. It is based on the conservation of the local vertices formed by the proteins that interact in the capsid," Luque explained. "This approach led to the discovery of six new types of icosahedral capsid layouts, while recovering the two classical layouts from Caspar-Klug based on Goldberg and geodesic polyhedra."

This work may also help inspire new ideas in architecture and design.

In these videos, different viral capsids are illustrated.


Sources: San Diego State University, AAAS/Eurekalert! via University of York, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 26, 2020
Microbiology
JAN 26, 2020
The Planet's Soil is Home to Microbe-Eating Protists
Protists don't fit neatly into any other category of organism; they are eukaryotes, but they are not a plant, fungi or animal....
FEB 17, 2020
Microbiology
FEB 17, 2020
Giant Viruses Blur the Line Between Life and Non-Life
Bacteriophages, also known as phages, are more complex than many viruses that we know of, and often carry large genomes....
FEB 26, 2020
Microbiology
FEB 26, 2020
NIAID Tests Remdesivir as a Treatment for COVID-19
A case of coronavirus has now occured in the US in someone without a known link to an infected person or travel....
MAR 01, 2020
Microbiology
MAR 01, 2020
Microbes Can Make Changes to Bile Acids That Alter Gene Expression
The microbes in our digestive tract can affect human health in many ways....
MAR 08, 2020
Microbiology
MAR 08, 2020
Cruise Ship Travel Should Now be Deferred, Says CDC
The CDC continues to issue new guidance related to the outbreak of the SARS-CoV-2 coronavirus and the COVID-19 illness it causes....
MAR 14, 2020
Genetics & Genomics
MAR 14, 2020
Tracking Genetic Mutations and the Spread of the SARS-CoV-2 Virus
As data is collected on the pandemic virus, it appears to be collecting mutations at a rate of about 24 every year....
Loading Comments...