JAN 22, 2020 6:03 PM PST

Tuberculosis Pathogen Can Survive in Soil Amoebae

WRITTEN BY: Carmen Leitch

Researchers have learned that the bacterium that causes bovine tuberculosis, called Mycobacterium bovis, is able to survive and grow in a type of single-celled organism called an amoeba, that lives in soil. The findings were reported in the ISME Journal.

Image credit: Pixabay

While bovine tuberculosis is not a major threat in the United States, the pathogen that causes the illness can be found around the world, and is a serious problem in some places. According to the World Organization for Animal Health, bovine tuberculosis could be found in 44 percent of the 182 countries that reported their status between January 2017 and June 2018. In Europe, cattle that have the disease must be killed and removed from the supply chain.

"Despite implementation of control measures, bovine TB continues to be a major threat to cattle and has an enormous impact on the rural economy," said the lead study author Professor Graham Stewart, Head of the Department of Microbial Sciences at the University of Surrey in the UK. Understanding the biology behind the TB disease and how it spreads is crucial for a balanced discussion on this devastating problem and to developing preventative measures to stop its spread."

Scientists have suggested that the bacterial pathogen evolved inside of another microorganism, like an amoeba, and eventually was able to jump to other species including cattle. In this work, the researchers wanted to learn more about how the pathogenic bacterium could survive in various conditions.

If amoebae encountered bacteria, the amoebae typically digest the bacterial cells like they're food. But when an amoeba called Dictyostelium discoideum was infected with M. bovis, the bacterium survived for two days unharmed. To shield itself, the bacterium utilized the same genes it uses when it's evading the immune system in animals like cattle and humans.

In its host, the M. bovis was found to be active and still growing, though at a slower pace and at lower-than-expected temperatures. The bacterium was thought to replicate at the body temperature of cattle and humans, yet replication was observed at much lower temperatures in this study - 37 versus 25 degrees Celsius, respectively. This adaptive ability probably helped the pathogen move between animals, the researchers suggested.

"An important additional benefit is that our research shows the potential for carrying out at least some future TB research in amoebae rather than in large animals," Stewart added.


Sources: Phys.org via University of Surrey, ISME Journal

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 14, 2021
Technology
Dental Implant Produces Its Own Electricity And Fights Bacteria
SEP 14, 2021
Dental Implant Produces Its Own Electricity And Fights Bacteria
The use of dental implants offers a long term, effective treatment approach for lost or missing teeth compared to method ...
SEP 21, 2021
Immunology
1 in 5 Hospitalized COVID Patients Develop Self-Destructive Antibodies
SEP 21, 2021
1 in 5 Hospitalized COVID Patients Develop Self-Destructive Antibodies
One in five hospitalized COVID-19 patients go on to develop autoantibodies—immune molecules that mistakenly target ...
OCT 12, 2021
Microbiology
Revealing the Efficient Enzymes of Methane-Producing Microbes
OCT 12, 2021
Revealing the Efficient Enzymes of Methane-Producing Microbes
The atmospheric levels of methane, which is known to be a potent greenhouse gas, have been steadily increasing for many ...
NOV 11, 2021
Immunology
Malaria Researchers Make a Surprising Antibody Find
NOV 11, 2021
Malaria Researchers Make a Surprising Antibody Find
Researchers looking into the immunology of malaria infections have made an unexpected find that could ultimately lead to ...
NOV 14, 2021
Cell & Molecular Biology
A Delivery System That Enables Gut Microbes to Communicate with the Body
NOV 14, 2021
A Delivery System That Enables Gut Microbes to Communicate with the Body
There are trillions of microbes that live in out gastrointestinal tract, and each one of those single-celled organisms h ...
NOV 25, 2021
Immunology
Battling Bacterial Pneumonia, No Antibiotics Required
NOV 25, 2021
Battling Bacterial Pneumonia, No Antibiotics Required
Instead of flooding the body with antibiotics, what if we could program cells to fight off pathogens more effectively? T ...
Loading Comments...