FEB 18, 2020 8:29 AM PST

Newly Found Glycopeptide Antibiotics Kill Bacteria in a New Way

WRITTEN BY: Carmen Leitch

The overuse and misuse of antibiotics and the adaptability of microbes has created a problem that people must solve: common antibiotics are not as effective as they used to be. Researchers have to engineer new drugs to fight microbial pathogens that are posing a growing threat to public health. Scientists have now identified two antibiotic compounds that attack bacteria in a new way and make good candidates for new medicines. The findings have been reported in Nature.

A medical illustration of methicillin-resistant, Staphylococcus aureus (MRSA) bacteria / Credit: CDC / Antibiotic Resistance Coordination and Strategy Unit / Medical Illustrator: Meredith Newlove

The investigators have found that two molecules in the glycopeptide antibiotic family, called corbomycin and complestatin, interfere with cell wall function in bacteria. These antibiotics are produced by microbes that live in soil. In a mouse model, the researchers showed that the drugs work against Staphylococcus aureus infections that are drug-resistant, known as MRSA. MRSA infections can be life-threatening in people.

"Bacteria have a wall around the outside of their cells that gives them shape and is a source of strength," said study first author Beth Culp, a graduate candidate in biochemistry and biomedical sciences at McMaster University.

"Antibiotics like penicillin kill bacteria by preventing building of the wall, but the antibiotics that we found actually work by doing the opposite; they prevent the wall from being broken down. This is critical for cell to divide," Culp explained. "In order for a cell to grow, it has to divide and expand. If you completely block the breakdown of the wall, it is like it is trapped in a prison, and can't expand or grow."

The researchers focused on molecules that are known to be part of the glycopeptide family. Next, they analyzed the genes carried by those members that don't have known resistance mechanisms, looking for a glycopeptide that might have a different strategy for killing bacteria.

"We hypothesized that if the genes that made these antibiotics were different, maybe the way they killed the bacteria was also different," added Culp.

Using sophisticated imaging tools, the researchers were able to confirm that the antibiotics they found work on the bacterial cell wall.

"This approach can be applied to other antibiotics and help us discover new ones with different mechanisms of action," said Culp. "We found one completely new antibiotic in this study, but since then, we've found a few others in the same family that have this same new mechanism."

Sources: Science Daily via McMaster University, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 03, 2021
Microbiology
Did Longer Days Help Fuel the Growth of Life on Earth?
AUG 03, 2021
Did Longer Days Help Fuel the Growth of Life on Earth?
Our atmosphere is about 20 percent oxygen, which life on our planet needs to survive. It's thought that billions of year ...
SEP 12, 2021
Coronavirus
Real-World, Post-Delta COVID-19 Vaccine Data & Potential Treatment
SEP 12, 2021
Real-World, Post-Delta COVID-19 Vaccine Data & Potential Treatment
New research may have identified a potential treatment or preventive medication for SARS-CoV-2 and other viral infection ...
SEP 14, 2021
Technology
Dental Implant Produces Its Own Electricity And Fights Bacteria
SEP 14, 2021
Dental Implant Produces Its Own Electricity And Fights Bacteria
The use of dental implants offers a long term, effective treatment approach for lost or missing teeth compared to method ...
SEP 28, 2021
Immunology
Cell Therapy Scrubs Tumors, Spares Transplanted Organs
SEP 28, 2021
Cell Therapy Scrubs Tumors, Spares Transplanted Organs
Hepatitis B infections have created a ‘silent epidemic’—infected people don’t display any sympto ...
SEP 30, 2021
Cancer
Gut Microbiota Influences Colon Cancer Development
SEP 30, 2021
Gut Microbiota Influences Colon Cancer Development
The gut microbiome consists of all the microorganisms living in an individual’s digestive system. Various factors ...
OCT 11, 2021
Microbiology
Small RNAs are Influential in Bacteria, Including Pathogens Like V. Cholerae
OCT 11, 2021
Small RNAs are Influential in Bacteria, Including Pathogens Like V. Cholerae
Like other organisms, bacteria have to take nutrients up from the environment and use them in various metabolic processe ...
Loading Comments...