FEB 18, 2020 8:29 AM PST

Newly Found Glycopeptide Antibiotics Kill Bacteria in a New Way

WRITTEN BY: Carmen Leitch

The overuse and misuse of antibiotics and the adaptability of microbes has created a problem that people must solve: common antibiotics are not as effective as they used to be. Researchers have to engineer new drugs to fight microbial pathogens that are posing a growing threat to public health. Scientists have now identified two antibiotic compounds that attack bacteria in a new way and make good candidates for new medicines. The findings have been reported in Nature.

A medical illustration of methicillin-resistant, Staphylococcus aureus (MRSA) bacteria / Credit: CDC / Antibiotic Resistance Coordination and Strategy Unit / Medical Illustrator: Meredith Newlove

The investigators have found that two molecules in the glycopeptide antibiotic family, called corbomycin and complestatin, interfere with cell wall function in bacteria. These antibiotics are produced by microbes that live in soil. In a mouse model, the researchers showed that the drugs work against Staphylococcus aureus infections that are drug-resistant, known as MRSA. MRSA infections can be life-threatening in people.

"Bacteria have a wall around the outside of their cells that gives them shape and is a source of strength," said study first author Beth Culp, a graduate candidate in biochemistry and biomedical sciences at McMaster University.

"Antibiotics like penicillin kill bacteria by preventing building of the wall, but the antibiotics that we found actually work by doing the opposite; they prevent the wall from being broken down. This is critical for cell to divide," Culp explained. "In order for a cell to grow, it has to divide and expand. If you completely block the breakdown of the wall, it is like it is trapped in a prison, and can't expand or grow."

The researchers focused on molecules that are known to be part of the glycopeptide family. Next, they analyzed the genes carried by those members that don't have known resistance mechanisms, looking for a glycopeptide that might have a different strategy for killing bacteria.

"We hypothesized that if the genes that made these antibiotics were different, maybe the way they killed the bacteria was also different," added Culp.

Using sophisticated imaging tools, the researchers were able to confirm that the antibiotics they found work on the bacterial cell wall.

"This approach can be applied to other antibiotics and help us discover new ones with different mechanisms of action," said Culp. "We found one completely new antibiotic in this study, but since then, we've found a few others in the same family that have this same new mechanism."

Sources: Science Daily via McMaster University, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 27, 2020
Microbiology
Underground Microbes Use an Ancient Form of Energy Production
AUG 27, 2020
Underground Microbes Use an Ancient Form of Energy Production
Organisms rely on a biological fuel known as ATP, which provides the energy for many processes. In cellular respiration, ...
AUG 31, 2020
Microbiology
Finding a Weakness in an Emerging Drug-Resistant Pathogen
AUG 31, 2020
Finding a Weakness in an Emerging Drug-Resistant Pathogen
Candida auris is a fungal pathogen that was initially reported in 2009. Its origins are unclear, but it has been found i ...
SEP 06, 2020
Microbiology
Small Changes in Vaccine Molecules Could Make Them More Effective
SEP 06, 2020
Small Changes in Vaccine Molecules Could Make Them More Effective
Effective vaccines have to trigger an immune response, which is intended to create an immune 'memory' of a specific infe ...
SEP 15, 2020
Microbiology
If They Must, Methane-Eating Microbes Will Consume Ammonia
SEP 15, 2020
If They Must, Methane-Eating Microbes Will Consume Ammonia
There are many different kinds of microbes, and some can use unusual substances to survive. Methanotrophs, for example, ...
SEP 21, 2020
Microbiology
A Fast, Cheap Way to See if Two Antibiotics Work Together
SEP 21, 2020
A Fast, Cheap Way to See if Two Antibiotics Work Together
When a person has a bacterial infection, doctors can prescribe antibiotics. Some antibiotics combos can work better than ...
SEP 28, 2020
Microbiology
The Flu Vaccine Will Not Increase the Risk of COVID-19
SEP 28, 2020
The Flu Vaccine Will Not Increase the Risk of COVID-19
Scientists and clinicians want people to get their flu shots this year, especially because of the ongoing pandemic.
Loading Comments...