MAR 01, 2020 7:25 AM PST

Microbes Can Make Changes to Bile Acids That Alter Gene Expression

WRITTEN BY: Carmen Leitch

We are all home to a unique community of microorganisms, and the ones that live in the gastrointestinal tract, the gut microbiome, don't only help us digest food and absorb nutrients. Research has shown that these microbes have a powerful effect on our health. There are many species of bacteria, fungi, archaea, and viruses that can live in the human gut, which carry their own genomes and can generate and release biologically active molecules. Scientists have now made a map of the molecules in mouse organs, and shown how microbes affect them. This effort revealed that microbes can influence how bile acids are structured in mice as well as humans, which might be impacting cellular function and influencing the risk of developing disease. The findings have been reported in Nature.

The video shows the location of molecules that were modified by microbes.

This shift in how molecules like bile acids are structured may impact how cells communicat and which genes are active at any time, said the study co-leader Pieter Dorrestein, Ph.D., professor and director of the Collaborative Mass Spectrometry Innovation Center in the Skaggs School of Pharmacy and Pharmaceutical Sciences at UC San Diego. "We hear a lot about how our own human genes influence our health and behaviors, so it may come as a shock to think that we could have molecules in the body that look and act the way they do not because of our genes, but because of another living organism," Dorrestein said.

In this research, the scientists compared mice without gut microbes to mice with normal microbiomes, and used a tool called mass spectrometry to identify as many molecules as possible in every mouse organ. To do so, they used a crowdsourced mass spectrometry repository they created called the GNPS database. They also connected these molecules to living microbes using genetic tools. The map was created after analyzing 768 samples harvested from 96 places on 29 organs from four mice without microbes and four with microbes. The gut microbiome determined up to 70 percent of the chemistry of a mouse gut, and even distant organs like the brain were affected; around 20 percent of molecules there were different in mice that harbored gut microbes.

Bile acids aid in the digestion of fats and oils, and can carry messages around the body. The amino acids glycine and taurine are added to bile acids by the liver. The researchers found that in mice with microbes, bile acids were also tagged with amino acids phenylalanine, tyrosine, and leucine, suggesting that gut microbes can also alter bile acids.

"More than 42,000 research papers have been published about bile acids over the course of 170 years," said study co-leader Robert Quinn, Ph.D., assistant professor at Michigan State University. "And yet these modifications had been overlooked."

To look for these effects in humans, the researchers queried public datasets and the American Gut Project with a tool they engineered called the Mass Spectrometry Search Tool (MASST). These unusually-modified bile acids were found in 25.3 percent of the datasets, and were present at higher levels in people with inflammatory bowel disease or cystic fibrosis.

Bile acids can also bind to farnesoid X receptors, which inhibit genes that are involved in bile acid production. Bile acids modified by microbes were found to have a powerful stimulatory effect in these receptors.

"This study provides a clear example of how microbes can influence the expression of human genes," Dorrestein said. "What we still don't know is the downstream consequences this could have, or how we might be able to intervene to improve human health."


Sources: AAAS/Eurekalert! via University of California - San Diego, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 23, 2021
Microbiology
Pregnant Moms Easily Pass On COVID-19 Antibodies Through Placenta
MAR 23, 2021
Pregnant Moms Easily Pass On COVID-19 Antibodies Through Placenta
Recent work has shown that SARS-CoV-2 antibodies that are carried by a pregnant woman can cross the placenta and reach t ...
APR 21, 2021
Microbiology
An Unknown Unknown - What's the State of Microbial Biodiversity?
APR 21, 2021
An Unknown Unknown - What's the State of Microbial Biodiversity?
Researchers have noted that we have a 'profound ignorance' about the state of the microbial populations of the world.
MAY 04, 2021
Cell & Molecular Biology
A Potential Weakness in SARS-CoV-2 is Caught on Video
MAY 04, 2021
A Potential Weakness in SARS-CoV-2 is Caught on Video
You can see the spike protein of the virus in action in this video.
MAY 09, 2021
Microbiology
Bacteria Can Read Genes Forwards or Backwards
MAY 09, 2021
Bacteria Can Read Genes Forwards or Backwards
One of the most basic processes in life in the creation of proteins from mRNA molecules, which are transcribed from DNA. ...
MAY 16, 2021
Cell & Molecular Biology
Another Piece of the Lyme Puzzle is Solved
MAY 16, 2021
Another Piece of the Lyme Puzzle is Solved
Over the past 20 years, Lyme has gone from a virtually unknown disease to the most reported vector-borne illness in the ...
MAY 23, 2021
Microbiology
Move Over Bacteria, Make Way for Protists
MAY 23, 2021
Move Over Bacteria, Make Way for Protists
In the world of microbes, organisms like viruses and bacteria get a lot of attention. But researchers are beginning to s ...
Loading Comments...