MAR 01, 2020 7:25 AM PST

Microbes Can Make Changes to Bile Acids That Alter Gene Expression

WRITTEN BY: Carmen Leitch

We are all home to a unique community of microorganisms, and the ones that live in the gastrointestinal tract, the gut microbiome, don't only help us digest food and absorb nutrients. Research has shown that these microbes have a powerful effect on our health. There are many species of bacteria, fungi, archaea, and viruses that can live in the human gut, which carry their own genomes and can generate and release biologically active molecules. Scientists have now made a map of the molecules in mouse organs, and shown how microbes affect them. This effort revealed that microbes can influence how bile acids are structured in mice as well as humans, which might be impacting cellular function and influencing the risk of developing disease. The findings have been reported in Nature.

The video shows the location of molecules that were modified by microbes.

This shift in how molecules like bile acids are structured may impact how cells communicat and which genes are active at any time, said the study co-leader Pieter Dorrestein, Ph.D., professor and director of the Collaborative Mass Spectrometry Innovation Center in the Skaggs School of Pharmacy and Pharmaceutical Sciences at UC San Diego. "We hear a lot about how our own human genes influence our health and behaviors, so it may come as a shock to think that we could have molecules in the body that look and act the way they do not because of our genes, but because of another living organism," Dorrestein said.

In this research, the scientists compared mice without gut microbes to mice with normal microbiomes, and used a tool called mass spectrometry to identify as many molecules as possible in every mouse organ. To do so, they used a crowdsourced mass spectrometry repository they created called the GNPS database. They also connected these molecules to living microbes using genetic tools. The map was created after analyzing 768 samples harvested from 96 places on 29 organs from four mice without microbes and four with microbes. The gut microbiome determined up to 70 percent of the chemistry of a mouse gut, and even distant organs like the brain were affected; around 20 percent of molecules there were different in mice that harbored gut microbes.

Bile acids aid in the digestion of fats and oils, and can carry messages around the body. The amino acids glycine and taurine are added to bile acids by the liver. The researchers found that in mice with microbes, bile acids were also tagged with amino acids phenylalanine, tyrosine, and leucine, suggesting that gut microbes can also alter bile acids.

"More than 42,000 research papers have been published about bile acids over the course of 170 years," said study co-leader Robert Quinn, Ph.D., assistant professor at Michigan State University. "And yet these modifications had been overlooked."

To look for these effects in humans, the researchers queried public datasets and the American Gut Project with a tool they engineered called the Mass Spectrometry Search Tool (MASST). These unusually-modified bile acids were found in 25.3 percent of the datasets, and were present at higher levels in people with inflammatory bowel disease or cystic fibrosis.

Bile acids can also bind to farnesoid X receptors, which inhibit genes that are involved in bile acid production. Bile acids modified by microbes were found to have a powerful stimulatory effect in these receptors.

"This study provides a clear example of how microbes can influence the expression of human genes," Dorrestein said. "What we still don't know is the downstream consequences this could have, or how we might be able to intervene to improve human health."


Sources: AAAS/Eurekalert! via University of California - San Diego, Nature

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 09, 2020
Microbiology
Mysterious Illness in Children May be Related to COVID-19
MAY 09, 2020
Mysterious Illness in Children May be Related to COVID-19
Once thought to be mostly unaffected by the virus, rare cases of an inflammatory syndrome are emerging in some kids that ...
MAY 24, 2020
Microbiology
Cavity-Causing Microbes Are Protected by Rings of Sugars and Germs
MAY 24, 2020
Cavity-Causing Microbes Are Protected by Rings of Sugars and Germs
Bacteria can form tough communities called biofilms, which are difficult to remove and can resist the effects of antimic ...
JUL 10, 2020
Cell & Molecular Biology
Gut Pathogen Linked to Reactive Arthritis
JUL 10, 2020
Gut Pathogen Linked to Reactive Arthritis
When bacteria escape from the gastrointestinal tract, they can cause serious health problems.
JUL 26, 2020
Cell & Molecular Biology
How SARS-CoV-2 Works
JUL 26, 2020
How SARS-CoV-2 Works
Cell biologist Carolyn Machamer has studied viruses for the past 35 years, and has seen outbreaks caused by several path ...
JUL 28, 2020
Microbiology
Scientists Find a Molecule That Causes Body Odor
JUL 28, 2020
Scientists Find a Molecule That Causes Body Odor
Most people will go to great lengths to prevent body odor. Now scientists have identified a bacterial enzyme that is a s ...
AUG 11, 2020
Microbiology
A New Microbe is Discovered in an 'Unnatural' Environment
AUG 11, 2020
A New Microbe is Discovered in an 'Unnatural' Environment
While we can exert a degree of control over our surroundings, we still share the world and our bodies with microbes.
Loading Comments...