SEP 04, 2020 12:07 PM PDT

Researchers Discover a Way to Use Microbes to Help Make Plastic

WRITTEN BY: Carmen Leitch

Researchers have discovered that some bacteria can make ethylene in a way we never knew about; microbes that metabolize sulfur to live also generate ethylene gas as a byproduct. If humans could harness this process, we may be able to create more environmentally-friendly methods for making plastics. Learn more about how plastic is made from the video below. The findings have been reported in Science.

Microbes in waterlogged soils produce high levels of ethylene, which can adversely affect agricultural crops and bioenergy feedstocks like switchgrass. This work may improve their health. / Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

"We may have cracked a major technological barrier to producing a large amount of ethylene gas that could replace fossil fuel sources in making plastics," said study leader Justin North, a research scientist in microbiology at Ohio State University. "There's still a lot of work to do to develop these strains of bacteria to produce industrially significant quantities of ethylene gas. But this opens the door."

North noted that ethylene is the organic compound that is used more than any other in manufacturing and is used in the production of almost all plastics. Ethylene itself is made from oil or natural gas. Some microorganisms that make ethylene have been found before this, but there has been a barrier to using the process, said the senior study author Robert Tabita, a professor of microbiology at Ohio State; it requires oxygen.

"Oxygen plus ethylene is explosive, and that is a major hurdle for using it in manufacturing," explained Tabita. "But the bacterial system we discovered to produce ethylene works without oxygen and that gives us a significant technological advantage."

Researchers in Tabita's lab were investigating a bacterium called Rhodospirillum rubrum and found that the microbes could acquire sulfur for growth from methylthio ethanol.

"We were trying to understand how the bacteria were doing this, because there were no known chemical reactions for how this was occurring," North said.

Their investigation showed that the bacteria were producing gases, including ethylene. Further work revealed how they did it, and that the microbes also used dimethyl sulfide to generate methane. North acknowledged that we don't know whether these mechanisms are common in nature.

If so, it could help explain some observations. Ethylene is useful to plants but harmful at high levels, said study co-author Kelly Wrighton, associate professor of soil and crop science at Colorado State University.

"This newly discovered pathway may shed light on many previously unexplained environmental phenomena, including the large amounts of ethylene that accumulates to inhibitory levels in waterlogged soils, causing extensive crop damage," Wrighton said.

"Now that we know how it happens, we may be able to circumvent or treat these problems so that ethylene doesn't accumulate in soils when flooding occurs," added North.

Like some other important discoveries, this one was serendipitous; the scientists started out by researching one protein in microbial sulfur metabolism.

"It was a result we could not predict in a million years," Tabita said. "Recognizing the industrial and environmental significance of ethylene, we embarked on these cooperative studies, and subsequently discovered a completely novel complex enzyme system. Who would have believed it?"

Sources: AAAS/Eurekalert! via Ohio State University, Science

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 06, 2020
Microbiology
Scarlet Fever 'Superclones' Pose Rising Public Health Threat
OCT 06, 2020
Scarlet Fever 'Superclones' Pose Rising Public Health Threat
More than 100 years ago, the world faced waves of scarlet fever epidemics; between around 1820 and 1880 there were sever ...
OCT 26, 2020
Microbiology
A Network of Fungi Helps Trees Grow
OCT 26, 2020
A Network of Fungi Helps Trees Grow
Trees rely on a network of fungal friends for good health. Communities of trees can share nutrients and other essentail ...
NOV 10, 2020
Microbiology
New Species of Rocky Mountain Spotted Fever-Causing Bacteria is IDed
NOV 10, 2020
New Species of Rocky Mountain Spotted Fever-Causing Bacteria is IDed
Ticks transmit the bacterial pathogen that causes Rocky Mountain Spotted Fever (RMSF).
NOV 14, 2020
Microbiology
The Structure of a Bacteriophage DNA Tube is Revealed
NOV 14, 2020
The Structure of a Bacteriophage DNA Tube is Revealed
Some viruses only infect bacteria; they care called bacteriophages or phages for short. As antibiotic-resistant bacteria ...
DEC 05, 2020
Genetics & Genomics
Super-Spreader Events Promoted 2018-2019 Hantavirus Outbreak
DEC 05, 2020
Super-Spreader Events Promoted 2018-2019 Hantavirus Outbreak
We've all learned about super-spreader events over the past year, but occasions where a large group of people gathers an ...
JAN 20, 2021
Microbiology
Cannabis Compound Could Lead to New Class of Antibiotics
JAN 20, 2021
Cannabis Compound Could Lead to New Class of Antibiotics
For the first time, a synthetic version of a non-psychoactive molecule found in marijuana has been shown to kill pathoge ...
Loading Comments...