SEP 26, 2020 4:33 AM PDT

Eliminating Biofilms with Green Tea-Derived Nanobots

WRITTEN BY: Carmen Leitch

Bacteria are everywhere in our world, and while the vast majority are harmless, some can cause dangerous infections. Bacteria, including bacterial pathogens, can also form tough communities called biofilms. As bacteria multiply and spread over a surface, the coating of microbes that is generated is difficult to destroy, and can help the individual microbes overcome challenges in their environment that might otherwise be deadly to individual microbes or small patches of bacteria.

Researchers are constantly searching for new ways to destroy biofilms, which can be a persistent problem on essential medical devices like catheters and prosthetic joints. New work reported in  ACS Applied Materials & Interfaces describes magnetically propelled microbots that researchers created using tea buds. They’ve called these biofilm-destroying devices "T-Budbots," and they are shown in the video.

Since biofilms can impair recovery and be a potential source of infections, clinicians try to eliminate them with repeated rounds of antibiotics, but the high doses that are necessary can have many side effects. In some cases, medical devices have to be removed and replaced, a costly and invasive process.

Researchers wanted to develop microbots that were compatible with a biological organism and could be manipulated with magnets so that biofilms could be totally removed. They began by using tea buds from the Camellia sinensis plant; they wanted something non-toxic, porous, cheap, and biodegradable. Polyphenols are also found in tea, and are an added bonus because they have antimicrobial properties.

The tea buds were ground up so the researchers could isolate porous microparticles from them, which were then coated with magnetite nanoparticles. These magnetic particles would enable the device to be controlled with a magnet. The antibiotic ciprofloxacin was then embedded into the pores of the nanoparticles.

The investigators found that the T-Budbots released the most antibiotic when conditions were acidic, something that happens in bacterial infections. They were able to put the microbots on bacterial biofilms growing in dishes, and could steer them around with magnets. The T-Budbots were able to get into the biofilm, kill the bacteria, and remove the debris, leaving only a clear path behind them in the dish.

There is more work to be done before these microbots will be ready for use in people, acknowledged the study authors, but the study shows that it’s feasible.

Sources: AAAS/Eurekalert! via American Chemical Society, ACS Applied Materials & Interfaces

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 11, 2021
Immunology
Bye-Bye Burning: A New UTI Vaccine
MAR 11, 2021
Bye-Bye Burning: A New UTI Vaccine
Researchers have developed a vaccine that “trains” the bladder to fight back against the bacteria that cause ...
MAR 18, 2021
Microbiology
How to Avoid Greenwashing Your Lab
MAR 18, 2021
How to Avoid Greenwashing Your Lab
Greenwashing is a term used to describe an intentionally-misleading or false claim about the environmental benefits of a ...
MAR 23, 2021
Immunology
Assay Detects Antibodies in Asymptomatic COVID Carriers
MAR 23, 2021
Assay Detects Antibodies in Asymptomatic COVID Carriers
It is estimated that around one in five people infected with SARS-CoV-2 will not show any infection symptoms. Some of th ...
APR 01, 2021
Microbiology
Mapping the Wild Microbiome to Search for Therapeutic Agents
APR 01, 2021
Mapping the Wild Microbiome to Search for Therapeutic Agents
Many people think of bacteria as disgusting germs, but there are plenty of important bacterial species that provide us w ...
APR 21, 2021
Immunology
Human T Cells Can't Recognize COVID Mutants
APR 21, 2021
Human T Cells Can't Recognize COVID Mutants
Genetic variants of the SARS-CoV-2 virus have emerged and tightened their grip on global communities as the pandemic rag ...
APR 29, 2021
Microbiology
Cell Atlas Helps Explain the Deadly Nature of SARS-CoV-2
APR 29, 2021
Cell Atlas Helps Explain the Deadly Nature of SARS-CoV-2
For over a year now, scientists and clinicians have been trying to understand why the SARS-CoV-2 virus causes such deadl ...
Loading Comments...