NOV 16, 2015 05:39 PM PST

Microbes, Beige Fat, and Obesity

WRITTEN BY: Kerry Evans
Researchers now have a better understanding of how gut microbes contribute to obesity.  

Mammals have white and brown fat cells.  Brown fat burns energy, while white fat stores it.  An excess of white fat leads to weight gain and can cause insulin resistance (¼ of a healthy adult’s body mass is white fat).  There is, however, a third type of fat cell - beige fat.  This type of fat develops within white fat tissue after exercise or exposure to the cold.  
 
Gut microbe diversity contributes to obesity.

What’s the connection between gut microbes and obesity?  It has been known for some time that gut microbe diversity differs between average and obese people, and researchers at the University of Geneva found that the absence of gut microbes causes white fat to morph into beige fat.  According to study author Mirko Trajkovski, “having observed that microbiota can affect the obesity onset, we suspected that microbiota depletion can change the insulin sensitivity by modifying the amount and balance of these various types of fat”.

The group tested the effects of a high-calorie diet on germ-free mice, mice pre-treated with antibiotics to deplete gut microbes, and control mice.  The control mice became obese and developed insulin resistance.  However, germ-free and antibiotic-treated mice maintained a healthy weight and did not develop insulin resistance.  White fat decreased and beige fat increased in the germ-free and antibiotic-treated mice, as they group predicted.

Trajkovski went on to investigate the mechanism by which beige fat develops.  When gut microbes are depleted, the number of eosinophils in white fat increases.  The eosinophils secrete cytokines that signal to macrophages.  These signals cause M1 macrophages to turn into M2 macrophages which then induce “browning” of white fat.

What’s next?  According to Trajkovski, "treating obesity with high doses of antibiotics is unrealistic -- mainly due to the risk of antibiotic resistance -- we want to explore alternative ways of suppressing or modifying the microbiota, and to identify the exact bacterial genes responsible for this phenomenon. We would then target only those, without having to deplete the entire microbiota”.
 
Sources: Science Daily, The Scientist, Nature, Wikipedia
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
OCT 21, 2019
Genetics & Genomics
OCT 21, 2019
Why Some Places Have More Baby Girls than Boys
Typically, there are more male babies born than females, with the global average lying at 105 boys born for every 100 girls. Although more males are born a...
OCT 21, 2019
Genetics & Genomics
OCT 21, 2019
Revealing the Epigenetic Patterns That Specific Enzymes Create
Genomic DNA is modified by chemical markers called epigenetic tags, which can change gene expression without altering the underlying genetic code....
OCT 21, 2019
Microbiology
OCT 21, 2019
To Maintain Diversity in the Microbiome, Wild Animals Need Their Natural Foods
Bacterial communities can be vital partners to many living organisms, from humans beings to the white-throated woodrat....
OCT 21, 2019
Genetics & Genomics
OCT 21, 2019
Gut Microbes can Significantly Impact Host Gene Expression
We all carry a vast number of microbes with us, and the microbial community in the gut is closely linked to our health and well-being....
OCT 21, 2019
Neuroscience
OCT 21, 2019
Alzheimer's to be Diagnosed from Pupil Dilation
Researchers from the University of California have found a low-cost, non-invasive method to aid in diagnosing Alzheimer’s Disease (AD) before cogniti...
OCT 21, 2019
Genetics & Genomics
OCT 21, 2019
Antibiotic-Resistance Genes Can Move From Humans to Animals
Researchers at Clemson University have been investigating how antibiotic resistance can move from humans into animals....
Loading Comments...