DEC 11, 2015 03:23 PM PST

Setting Bacteria's Biological Clock

WRITTEN BY: Kerry Evans
Ever had jet-lag?  This woe of long-distance travelers strikes when your circadian rhythm (or, biological clock) is misregulated.  Circadian rhythms have been observed in numerous animals, plants, and fungi. What about bacteria, you ask?  Why yes, some bacteria even have a biological clock!

In animals (humans included) body temperature, hormone production, and brain waves all follow circadian rhythms.  In fact, when certain “clock” genes are mutated in mice, the animals become obese and are no longer able to regulate glucose metabolism.  Basically, the biological clock is a pretty big deal.
 
Circadian rhythms regulate the physiology of many organisms.

Recently, Harvard University researchers “transplanted” a biological clock into E. coli, a species of bacteria that doesn’t naturally follow circadian rhythms.  They did so by outfitting E. coli with a circadian rhythm-controlled “protein circuit” from the cyanobacterium Synechoccus elongatus.

This protein circuit is made up of three major proteins: KaiA, B, and C.  During the day, KaiA promotes the phosphorylation of KaiC.  At night, KaiB inhibits KaiA, causing KaiC to be dephosphorylated. Certain genes, like those important for cell division and photosynthesis, are regulated based on whether or not KaiC is phosphorylated.  The researchers also hooked this protein circuit up to a reporter system that produced an easily-detectable fluorescent protein based on whether or not KaiC was phosphorylated.

Pretty cool, but what’s the point?  Bacteria engineered to respond to circadian rhythms could be used to release drugs or other therapeutics over a specific time frame.  According to study author Anna Chen,  “the ultimate dream application would be to deliver these circadian E. coli to an individual in pill form, which could allow the circadian rhythm to be linked to additional biological circuits in order to perform a precisely–timed release of drugs, or to be able to sense and influence the host's circadian rhythm”.
 

Sources: Science, Harvard University, Wikipedia
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
OCT 20, 2018
Microbiology
OCT 20, 2018
A Killer Combo: Probiotics and Antibiotics
Researchers developed a way to protect probiotics from the effects of antmicrobial drugs....
NOV 21, 2018
Videos
NOV 21, 2018
The CDC Issues a Serious Warning About All Romaine Lettuce
Don't eat any romaine lettuce, and throw away any you may have at home....
NOV 25, 2018
Drug Discovery
NOV 25, 2018
Advancing Drug Therapies for an Increasing Case of a Parasitic infection Among Displaced Syrians
Cases of Cutaneous leishmaniasis (CL), a parasitic disease, has increased dramatically in Syria and neighboring countries as a result of the conflict-relat...
NOV 30, 2018
Microbiology
NOV 30, 2018
C-Section Deliveries Disrupt the Transmission of Microbes From Mom to Baby
From our earliest days, bacteria exert a powerful influence on many aspects of our health....
DEC 06, 2018
Microbiology
DEC 06, 2018
A Bacterial Protein can Encourage Cancer Development
It's been suggested that a fifth of all cancers are caused by microbial infections, and new work indicates that the estimate is probably low....
DEC 12, 2018
Cell & Molecular Biology
DEC 12, 2018
Study Shows Why Diets Rich in Red Meat Increase Heart Disease Risk
For decades, we've known that red meat is a risk factor for heart disease. Now, researchers at the Cleveland Clinic know why....
Loading Comments...