DEC 11, 2015 3:23 PM PST

Setting Bacteria's Biological Clock

WRITTEN BY: Kerry Evans
Ever had jet-lag?  This woe of long-distance travelers strikes when your circadian rhythm (or, biological clock) is misregulated.  Circadian rhythms have been observed in numerous animals, plants, and fungi. What about bacteria, you ask?  Why yes, some bacteria even have a biological clock!

In animals (humans included) body temperature, hormone production, and brain waves all follow circadian rhythms.  In fact, when certain “clock” genes are mutated in mice, the animals become obese and are no longer able to regulate glucose metabolism.  Basically, the biological clock is a pretty big deal.
 
Circadian rhythms regulate the physiology of many organisms.

Recently, Harvard University researchers “transplanted” a biological clock into E. coli, a species of bacteria that doesn’t naturally follow circadian rhythms.  They did so by outfitting E. coli with a circadian rhythm-controlled “protein circuit” from the cyanobacterium Synechoccus elongatus.

This protein circuit is made up of three major proteins: KaiA, B, and C.  During the day, KaiA promotes the phosphorylation of KaiC.  At night, KaiB inhibits KaiA, causing KaiC to be dephosphorylated. Certain genes, like those important for cell division and photosynthesis, are regulated based on whether or not KaiC is phosphorylated.  The researchers also hooked this protein circuit up to a reporter system that produced an easily-detectable fluorescent protein based on whether or not KaiC was phosphorylated.

Pretty cool, but what’s the point?  Bacteria engineered to respond to circadian rhythms could be used to release drugs or other therapeutics over a specific time frame.  According to study author Anna Chen,  “the ultimate dream application would be to deliver these circadian E. coli to an individual in pill form, which could allow the circadian rhythm to be linked to additional biological circuits in order to perform a precisely–timed release of drugs, or to be able to sense and influence the host's circadian rhythm”.
 

Sources: Science, Harvard University, Wikipedia
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
APR 19, 2021
Microbiology
Small Differences Enable Some Microbes To Persist in the Gut
APR 19, 2021
Small Differences Enable Some Microbes To Persist in the Gut
The world is full of microbes that have colonized nearly every environment including the human body. The vast majority o ...
APR 25, 2021
Cell & Molecular Biology
Natural Molecules Can Stop Antibodies From Neutralizing SARS-CoV-2
APR 25, 2021
Natural Molecules Can Stop Antibodies From Neutralizing SARS-CoV-2
When we're exposed to a pathogen, our immune system normally mounts a robust response against it. Antibodies are generat ...
MAY 20, 2021
Microbiology
Sneaky Antoni van Leeuwenhoek Duped Curious Academics
MAY 20, 2021
Sneaky Antoni van Leeuwenhoek Duped Curious Academics
Antoni van Leeuwenhoek is a well-known pioneer in the field of microscopy. His research was so advanced, it took about 1 ...
MAY 26, 2021
Coronavirus
Why Did the COVID-19 Lab Leak Theory Suddenly Gain Traction?
MAY 26, 2021
Why Did the COVID-19 Lab Leak Theory Suddenly Gain Traction?
Since the onset of the COVID-19 pandemic, there has been little doubt that the virus emerged somewhere in or around Wuha ...
MAY 27, 2021
Microbiology
Some Microbes May Protect the Gut From Chemo's Harmful Effects
MAY 27, 2021
Some Microbes May Protect the Gut From Chemo's Harmful Effects
The microbes in our gut can influence our physiology in many ways. Some gut microbes have a positive impact on human hea ...
JUN 13, 2021
Microbiology
Bacteria May Influence Fear in Babies
JUN 13, 2021
Bacteria May Influence Fear in Babies
The microbes that call the human gastrointestinal tract home are with us since birth (or even earlier) and seem to have ...
Loading Comments...