DEC 11, 2015 03:23 PM PST

Setting Bacteria's Biological Clock

WRITTEN BY: Kerry Evans
Ever had jet-lag?  This woe of long-distance travelers strikes when your circadian rhythm (or, biological clock) is misregulated.  Circadian rhythms have been observed in numerous animals, plants, and fungi. What about bacteria, you ask?  Why yes, some bacteria even have a biological clock!

In animals (humans included) body temperature, hormone production, and brain waves all follow circadian rhythms.  In fact, when certain “clock” genes are mutated in mice, the animals become obese and are no longer able to regulate glucose metabolism.  Basically, the biological clock is a pretty big deal.
 
Circadian rhythms regulate the physiology of many organisms.

Recently, Harvard University researchers “transplanted” a biological clock into E. coli, a species of bacteria that doesn’t naturally follow circadian rhythms.  They did so by outfitting E. coli with a circadian rhythm-controlled “protein circuit” from the cyanobacterium Synechoccus elongatus.

This protein circuit is made up of three major proteins: KaiA, B, and C.  During the day, KaiA promotes the phosphorylation of KaiC.  At night, KaiB inhibits KaiA, causing KaiC to be dephosphorylated. Certain genes, like those important for cell division and photosynthesis, are regulated based on whether or not KaiC is phosphorylated.  The researchers also hooked this protein circuit up to a reporter system that produced an easily-detectable fluorescent protein based on whether or not KaiC was phosphorylated.

Pretty cool, but what’s the point?  Bacteria engineered to respond to circadian rhythms could be used to release drugs or other therapeutics over a specific time frame.  According to study author Anna Chen,  “the ultimate dream application would be to deliver these circadian E. coli to an individual in pill form, which could allow the circadian rhythm to be linked to additional biological circuits in order to perform a precisely–timed release of drugs, or to be able to sense and influence the host's circadian rhythm”.
 

Sources: Science, Harvard University, Wikipedia
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
NOV 14, 2019
Genetics & Genomics
NOV 14, 2019
Why Some Places Have More Baby Girls than Boys
Typically, there are more male babies born than females, with the global average lying at 105 boys born for every 100 girls. Although more males are born a...
NOV 14, 2019
Genetics & Genomics
NOV 14, 2019
A Pathogen That Has Evolved to Spread in Hospitals
Clostridium difficile is the primary cause of infections that are acquired in hospital settings; it causes diarrhea and intestinal inflammation....
NOV 14, 2019
Immunology
NOV 14, 2019
This is How Your Immune System Responds to Ebola Vaccination
Vaccines to prevent Ebola are still in their infancy, with experimental-only versions being used only in the most dire of instances. In a new study, scient...
NOV 14, 2019
Microbiology
NOV 14, 2019
The Antimicrobial Power of Mucus is Revealed
We produce several liters of mucus every day to cover more than 200 square meters in the human body....
NOV 14, 2019
Microbiology
NOV 14, 2019
Drug-Resistant Microbes Found in Many Raw Pet Foods
Raw dog food is marketed as a diet that mimics the food of dog's ancestors. But it may pose a serious risk to both pets and their human companions....
NOV 14, 2019
Genetics & Genomics
NOV 14, 2019
A Major Step Toward a Vaccine for Severe Malaria
Scientists have now learned more about malaria proteins and the antibodies that combat them....
Loading Comments...