JAN 17, 2016 6:31 AM PST

Host microRNAs Shape the Microbiome

WRITTEN BY: Kerry Evans
Researchers at Brigham and Women’s Hospital and Harvard Medical School identified a new mechanism that mammals use to manage their gut microbes.

A number of factors shape the host microbiome, including diet, disease, and genetics.  Weiner and colleagues found that microRNAs (miRNAs) produced by intestinal epithelial cells are capable of regulating bacterial growth.

miRNAs are non-coding RNAs, roughly 18-23 nucleotides in length.  The pre-miRNAs are processed in the cytoplasm by an enzyme called dicer.  The miRNAs base pair to complementary sequences of mRNA and this interaction silences gene expression through various mechanisms.  The human genome probably encodes around 1,000 miRNAs that regulate roughly 60% of the genome.
 
miRNAs effectively silence gene expression.

According to study author Howard Weiner, “since gut microbes play an important role in host metabolism and immunity as well as in disease, it is important to understand the mechanisms by which the microbiota is regulated by the host and to identify ways in which to manipulate the microbiome … our findings reveal a host defense mechanism and highlight microRNAs as a strategy for manipulation of the microbiome for the health of the host”.

The group found that mice with dicer-deficient intestinal epithelial cells had trouble controlling the growth of their gut microbes and developed colitis more frequently.  This was reversed, however, when the mice were treated with wild type miRNAs.  Finally, they showed that the mouse miRNAs were capable of entering bacteria.  They added fluorescent miRNAs to fluorescent E. coli cells and observed the miRNAs entering the bacteria and interacting with their DNA.  

“Our study suggests that the ability of the host to control gut microbes likely provided organisms with an evolutionary advantage, that is, the prevention of diseases such as colitis and colorectal cancer … we are optimistic that it will one day be possible to harness this natural host defense mechanism by administering microRNAs as therapeutic compounds to improve health and treat disease", says Weiner.

Sources: Cell, Science Daily, Wikipedia
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
APR 01, 2021
Microbiology
Mapping the Wild Microbiome to Search for Therapeutic Agents
APR 01, 2021
Mapping the Wild Microbiome to Search for Therapeutic Agents
Many people think of bacteria as disgusting germs, but there are plenty of important bacterial species that provide us w ...
APR 27, 2021
Immunology
Breakthrough Malaria Vaccine Is a Ray of Hope
APR 27, 2021
Breakthrough Malaria Vaccine Is a Ray of Hope
University of Oxford scientists have developed a vaccine against malaria, which they describe as having “unprecede ...
MAY 04, 2021
Immunology
One Vaccine to Rule Them All
MAY 04, 2021
One Vaccine to Rule Them All
There are currently five variants of concern in the U.S., genetically distinct forms of the COVID-causing coronavirus th ...
MAY 10, 2021
Microbiology
Our Lungs Carry Fungi
MAY 10, 2021
Our Lungs Carry Fungi
For many years, many parts of the human body were considered to be sterile, which is to say, totally free of microorgani ...
JUN 03, 2021
Microbiology
How HIV Can Deplete White Matter in the Brain
JUN 03, 2021
How HIV Can Deplete White Matter in the Brain
The brain is sometimes called grey matter, which is made up of neurons. But it also contains white matter, which are neu ...
JUN 17, 2021
Microbiology
Malaria Pathogen Caught Invading Red Blood Cells
JUN 17, 2021
Malaria Pathogen Caught Invading Red Blood Cells
Mosquitoes are the world's deadliest animals (after humans) and they transmit malaria, which kills about 400,000 people ...
Loading Comments...