MAR 04, 2016 4:40 PM PST

Better Know a Microbe: Epulopiscium

WRITTEN BY: Kerry Evans
What’s the first thing you think of when you see the word “bacteria”? My first thought is, “those things are tiny!”. (Ok, most of you probably think “disease!”, but bear with me.) Not all bacteria are tiny, some are actually visible to the naked eye!

Species of Epulopiscium are among the largest bacteria ever discovered. The cells grow to 0.6 mm in length - about the size of a grain of sand - and their volume is about 2,000 times greater than average bacteria. (Only Thiomargarita namibiensis is larger, at nearly 0.75 mm in diameter.) Epulopiscium’s size is probably due to the fact that it carries around many, many copies of its genome, but the jury is still out on this.
Epulopiscium dwarfs this E. coli cell.

The name Epulopiscium means “guest at a banquet of fish”. They are so-named because these bacteria are intestinal symbionts of surgeonfish. Since Epulopiscium cells are so large and have a unique way of reproducing (more on this later), they were classified initially as protists. However, 16S rRNA analysis revealed that Epulopiscium is rather closely-related to species in the Gram-positive genus Clostridium.
 
Epulopiscium is an intestinal symbiont of the surgeonfish.

Remarkably, all work done on Epulopiscium uses cells taken directly from surgeonfish because this species has yet to be cultured outside of its host. Although Epulopiscium is tough to study, we know quite a bit about it.

For one, Epulopiscium produces a “cortex” made up of vesicles and tubules. Since the cells are so large, these structures may be used to shuttle waste out of the cells. Alternately, they may be used to transport substances throughout the cell.

Epulopiscium also regulates the pH within the surgeonfish gut. This process may regulate metabolism in the gut, but this is not clear.

Last, but not least, Epulopiscium has a very odd way of reproducing. Its life cycle is linked to the daily activities of the surgeonfish. In the morning, the bacterial cells contain spherical nucleoids (these contain DNA) at each cell pole. As the day progresses, the cells increase in length, and the nucleoids replicate inside the parent cell, forming daughter cells. At this point, the daughter cells are released, killing the parent.
 
Daughter cells divide within the parent cell.

Sources: MicrobeWiki, Journal of Bacteriology, Cornell University, Wikipedia, Missouri S&T
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
MAY 17, 2020
Microbiology
More Research Links ALS to the Microbiome
MAY 17, 2020
More Research Links ALS to the Microbiome
The community of microorganisms that lives in the gastrointestinal tract has a powerful influence on human health.
MAY 21, 2020
Clinical & Molecular DX
Fidget Spinner Diagnoses Infections
MAY 21, 2020
Fidget Spinner Diagnoses Infections
The fidget spinner toy craze took the world by storm — a small, boomerang-shaped gadget that rotates hypnotically ...
JUN 01, 2020
Genetics & Genomics
Vaping Increases Oral Disease Risk After Only a Few Months
JUN 01, 2020
Vaping Increases Oral Disease Risk After Only a Few Months
E-cigarettes have emerged as a healthier alternative to smoking, but many studies have suggested that vaping still poses ...
JUN 07, 2020
Drug Discovery & Development
Repurposing An Antibiotic To Defeat a Deadly Superbug
JUN 07, 2020
Repurposing An Antibiotic To Defeat a Deadly Superbug
A recent study published in Nature Microbiology describes how an old antibiotic used for Tuberculosis can be powerful tr ...
JUN 30, 2020
Microbiology
Researchers Find a Flu They Say Has the Potential to Cause a Pandemic
JUN 30, 2020
Researchers Find a Flu They Say Has the Potential to Cause a Pandemic
The world's attention is on a virus right now - the pandemic coronavirus that causes COVID-19. But researchers are still ...
AUG 04, 2020
Microbiology
Johns Hopkins is Starting COVID-19 Plasma Trials
AUG 04, 2020
Johns Hopkins is Starting COVID-19 Plasma Trials
Researchers at JHU are starting a controlled trial that aims to learn whether plasma from recovered COVID-19 patients ca ...
Loading Comments...