MAR 04, 2016 04:40 PM PST

Better Know a Microbe: Epulopiscium

WRITTEN BY: Kerry Evans
What’s the first thing you think of when you see the word “bacteria”? My first thought is, “those things are tiny!”. (Ok, most of you probably think “disease!”, but bear with me.) Not all bacteria are tiny, some are actually visible to the naked eye!

Species of Epulopiscium are among the largest bacteria ever discovered. The cells grow to 0.6 mm in length - about the size of a grain of sand - and their volume is about 2,000 times greater than average bacteria. (Only Thiomargarita namibiensis is larger, at nearly 0.75 mm in diameter.) Epulopiscium’s size is probably due to the fact that it carries around many, many copies of its genome, but the jury is still out on this.
Epulopiscium dwarfs this E. coli cell.

The name Epulopiscium means “guest at a banquet of fish”. They are so-named because these bacteria are intestinal symbionts of surgeonfish. Since Epulopiscium cells are so large and have a unique way of reproducing (more on this later), they were classified initially as protists. However, 16S rRNA analysis revealed that Epulopiscium is rather closely-related to species in the Gram-positive genus Clostridium.
 
Epulopiscium is an intestinal symbiont of the surgeonfish.

Remarkably, all work done on Epulopiscium uses cells taken directly from surgeonfish because this species has yet to be cultured outside of its host. Although Epulopiscium is tough to study, we know quite a bit about it.

For one, Epulopiscium produces a “cortex” made up of vesicles and tubules. Since the cells are so large, these structures may be used to shuttle waste out of the cells. Alternately, they may be used to transport substances throughout the cell.

Epulopiscium also regulates the pH within the surgeonfish gut. This process may regulate metabolism in the gut, but this is not clear.

Last, but not least, Epulopiscium has a very odd way of reproducing. Its life cycle is linked to the daily activities of the surgeonfish. In the morning, the bacterial cells contain spherical nucleoids (these contain DNA) at each cell pole. As the day progresses, the cells increase in length, and the nucleoids replicate inside the parent cell, forming daughter cells. At this point, the daughter cells are released, killing the parent.
 
Daughter cells divide within the parent cell.

Sources: MicrobeWiki, Journal of Bacteriology, Cornell University, Wikipedia, Missouri S&T
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
JUL 18, 2018
Genetics & Genomics
JUL 18, 2018
Shedding Light on a Genomic Mystery
There are untold numbers of bacteria in our world, and we play host to trillions of microbes. So what are all those bacterial genes doing?...
JUL 19, 2018
Microbiology
JUL 19, 2018
Mom's Microbiome has a Big Impact on Kid's Autism Risk
For many years, scientists have been trying to learn more about the causes of autism....
AUG 13, 2018
Genetics & Genomics
AUG 13, 2018
A Kind of Forensics to ID the Source of Bacterial Outbreaks
Scientists at Mayo Clinic have developed a way to use whole genome sequencing to locate the source of deadly bacterial pathogens....
AUG 27, 2018
Genetics & Genomics
AUG 27, 2018
A Better Way to Classify Bacteria
The classification of organisms into groups, taxonomy, has taken an important step forward....
SEP 04, 2018
Drug Discovery
SEP 04, 2018
'Fosfomycin' Antibiotic Treatment to Combat Listeria Infections
Antibiotic-resistant bacteria that were long thought to be untreatable may now be treated with a powerful antibiotic according to a recent study published ...
OCT 09, 2018
Drug Discovery
OCT 09, 2018
'Copper Antibiotic Peptide' Effective in Eradicating Tuberculosis
The bacterium responsible for Tuberculosis has found a way to avoid antibiotics by hiding inside the macrophages which are the specific immune cells that a...
Loading Comments...