JUN 11, 2016 03:43 PM PDT

Toxoplasma wreaks havoc on neurons

WRITTEN BY: Kerry Evans
Researchers at the University of California, Riverside, figured out how Toxoplasma gondii causes neurodegenerative disease.

Toxoplasma gondii is an obligate intracellular parasite. It’s also a protozoan, meaning it’s a unicellular eukaryote. T. gondii is sort of a quirky parasite - it happily infects all warm-blooded animals (causing “toxoplasmosis”), but only replicates sexually in domestic cats.

Humans most often become infected by eating undercooked meats and through exposure to cat feces. (Be careful cleaning out that litterbox!) Oddly enough, the highest rates of infection are actually in France, where almost 84% of the population is infected.
 
Toxoplasma can be transmitted by domestic cats.

Most healthy adults that become infected with T. gondii have only flu-like symptoms. However, infants and the immunocompromised can develop severe neurologic disease.

T. gondii infection increases the amount of extracellular glutamate in the brain; glutamate is a critically important neurotransmitter. Cells called astrocytes usually keep extracellular glutamate at a minimum.

So, what does glutamate have to do with neurodegenerative disease? It turns out that extracellular glutamate also builds up during the course of neurodegenerative diseases like multiple sclerosis and ALS, and it also increases after traumatic brain injuries.

And why is too much glutamate a bad thing? According to study author Emma H. Wilson, “when a neuron fires it releases glutamate into the space between itself and a nearby neuron … the nearby neuron detects this glutamate which triggers a firing of the neuron. If the glutamate isn't cleared by GLT-1 (a glutamate transporter) then the neurons can't fire properly the next time and they start to die.”

Wilson and colleagues wanted to know exactly how T. gondii affects glutamate. They found that Toxoplasma infection causes the astrocytes (the cells that regulate glutamate) to malfunction, downregulating GLT-1 expression. Too little GLT-1 means too much glutamate.

The group also tested this by treating T. gondii-infected mice with the antibiotic ceftriaxone (this drug effectively treats ALS in mice). Ceftriaxone upregulated the expression of GLT-1, decreasing extracellular glutamate and helping neurons function more normally. Pretty nifty!
 
 

Sources: UC Riverside, Science Daily, Wikipedia
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
AUG 12, 2018
Microbiology
AUG 12, 2018
What Allows Some Microbes to Live in the Gut?
Microbes have to first pass through the harsh stomach environment to colonize the gastrointestinal tract....
AUG 13, 2018
Genetics & Genomics
AUG 13, 2018
A Kind of Forensics to ID the Source of Bacterial Outbreaks
Scientists at Mayo Clinic have developed a way to use whole genome sequencing to locate the source of deadly bacterial pathogens....
AUG 13, 2018
Immunology
AUG 13, 2018
Silent Viruses Impact Microbe and Immune Cell Populations
Subclinical infections may alter the immune system and gut microbiota in the human host impacting how we respond to environmental stimuli like vaccines....
AUG 31, 2018
Microbiology
AUG 31, 2018
An Ebola Outbreak in the Democratic Republic of Congo
In August, the World Health Organization declared that an Ebola outbreak was happening in the DRC....
SEP 26, 2018
Microbiology
SEP 26, 2018
Improving Gut Health - with Viruses
Viruses don't only infect animals. Some, called bacteriophages, can infect bacteria....
OCT 08, 2018
Genetics & Genomics
OCT 08, 2018
Neanderthal DNA Helps us Fight Viruses
The last Neanderthals died around 40,000 years ago, but not before breeding with other humans that were starting to move around the globe....
Loading Comments...