JUN 11, 2016 03:43 PM PDT

Toxoplasma wreaks havoc on neurons

WRITTEN BY: Kerry Evans
Researchers at the University of California, Riverside, figured out how Toxoplasma gondii causes neurodegenerative disease.

Toxoplasma gondii is an obligate intracellular parasite. It’s also a protozoan, meaning it’s a unicellular eukaryote. T. gondii is sort of a quirky parasite - it happily infects all warm-blooded animals (causing “toxoplasmosis”), but only replicates sexually in domestic cats.

Humans most often become infected by eating undercooked meats and through exposure to cat feces. (Be careful cleaning out that litterbox!) Oddly enough, the highest rates of infection are actually in France, where almost 84% of the population is infected.
 
Toxoplasma can be transmitted by domestic cats.

Most healthy adults that become infected with T. gondii have only flu-like symptoms. However, infants and the immunocompromised can develop severe neurologic disease.

T. gondii infection increases the amount of extracellular glutamate in the brain; glutamate is a critically important neurotransmitter. Cells called astrocytes usually keep extracellular glutamate at a minimum.

So, what does glutamate have to do with neurodegenerative disease? It turns out that extracellular glutamate also builds up during the course of neurodegenerative diseases like multiple sclerosis and ALS, and it also increases after traumatic brain injuries.

And why is too much glutamate a bad thing? According to study author Emma H. Wilson, “when a neuron fires it releases glutamate into the space between itself and a nearby neuron … the nearby neuron detects this glutamate which triggers a firing of the neuron. If the glutamate isn't cleared by GLT-1 (a glutamate transporter) then the neurons can't fire properly the next time and they start to die.”

Wilson and colleagues wanted to know exactly how T. gondii affects glutamate. They found that Toxoplasma infection causes the astrocytes (the cells that regulate glutamate) to malfunction, downregulating GLT-1 expression. Too little GLT-1 means too much glutamate.

The group also tested this by treating T. gondii-infected mice with the antibiotic ceftriaxone (this drug effectively treats ALS in mice). Ceftriaxone upregulated the expression of GLT-1, decreasing extracellular glutamate and helping neurons function more normally. Pretty nifty!
 
 

Sources: UC Riverside, Science Daily, Wikipedia
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
NOV 13, 2019
Microbiology
NOV 13, 2019
Colombia Declares a State of Emergency as Banana Fungus Reaches the Americas
Bananas: the world's most popular fruit, a major source of food for millions of people, and now, seriously threatened by fungus....
NOV 13, 2019
Health & Medicine
NOV 13, 2019
Acute Flaccid Myelitis and Its Association With Enterovirus D68
Acute flaccid myelitis (AFM), a polio-like infection, caught the attention of physicians in the U.S. during late summer and early fall in 2014. The outbrea...
NOV 13, 2019
Microbiology
NOV 13, 2019
A Mosquito-borne Disease Called EEE is Spreading This Year
Massachusetts health officials confirmed yesterday that a third person has died from Eastern Equine Encephalitis this year....
NOV 13, 2019
Genetics & Genomics
NOV 13, 2019
A Way to Predict Which Microbes Can Cause Cancer
Researchers have created a technique that can identify bacteria and viruses that are linked to cancer....
NOV 13, 2019
Microbiology
NOV 13, 2019
UVB Exposure Can Change the Gut Microbiome
The research may help explain why UVB light appears to help protect against inflammatory disorders....
NOV 13, 2019
Clinical & Molecular DX
NOV 13, 2019
Meningitis and Encephalitis: Testing & Diagnosis Strategies for Effective Treatment
Meningitis is an inflammation of the membranes surrounding the brain (meninges) and spinal cord. Encephalitis, on the other hand, refers to inflammation of...
Loading Comments...