JUL 17, 2016 5:49 AM PDT

New way to Engineer E.coli for Biofuel Production

WRITTEN BY: Carmen Leitch
Important fuels and chemicals have been made in genetically engineered strains of Escherichia coli by modifying this microbe’s fatty acid synthase (FAS), stimulating the bacterium to produce chemicals. E. coli has been altered to make chemicals used in the manufacture of detergents and lubricants as well as methyl ketones that have properties amenable to fuel production. However, up to this point, microbial production methods utilize tightly regulated enzymatic processes that can be inefficient for large scales. 
Alternative acyl-CoA production pathways / Credit: Metabolic Engineering:
Reporting in Metabolic Engineering, researchers with the U.S. Department of Energy's Joint BioEnergy Institute have developed an alternative FAS methodology that uses enzymes from other organisms to work with E. coli’s FAS, improving the microbe's capacity for making chemicals.

While fatty alcohols can be generated from plant, animal, and petroleum sources, using microbes for the synthesis of such chemicals is a much more sustainable method. Optimization of this system even more might lead to microbes with incredibly efficient conversion of biomass into fuels and other desired products.

FAS is strictly regulated in bacteria as a vital part of metabolism. The BioEnergy Institute scientists got around that regulation by engineering several recombinant FAS enzymes that can function in parallel with the normal, native E. coli FAS. They determined that the engineered FAS that was the most active in E. coli was FAS1A from Corynebacterium glutamicum - a tiny, non-motile, Gram-positive soil bacterium. The investigators leveraged that enzyme to produce oleochemicals including methyl ketones and fatty alcohols.
Corynebacterium glutamicum / Credit: Anthony D'Onofrio/www.biology101.org
C. glutamicum is well known as a workhorse in the fermentation industry. It’s been used for multi-million-ton scale production of glutamate and lysine for over 60 years. Relatively recently, research has focused on engineering it beyond simple amino acid manufacture.

It is believed that this work is the first example of in vivo function of recombinant, heterologous FAS in E. coli. The efficient use of FAS1 enzymes for biofuel and bioproduct production could potentially lead to the large scale conversion of biomass. In addition, the functional expression of such large enzyme complexes in E. coli will enable their study without needing to culture the native organisms.

The research team is currently investigating potential ways to make improvements to the system, and suggest several. Fatty alcohol production may be improved further by using E. coli strains that are engineered and selected for fatty alcohol tolerance. Another way might be to expand the repertoire of organisms from which FAS1 enzymes can be expressed, to vary genetic features, or to regulate of FAS1 expression dynamically, among other potential strategies the scientists are now exploring. 

Sources: Computational and Structural Biotechnology Journal, Metabolic Engineering, ScienceDaily via Department of Energy, Office of Science
About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 25, 2021
Microbiology
Good Microbes Can Help Plants Withstand Heat
MAR 25, 2021
Good Microbes Can Help Plants Withstand Heat
Bacteria live everywhere, and we're starting to understand how they affect the biology of animals and plants. This comes ...
APR 01, 2021
Microbiology
Mapping the Wild Microbiome to Search for Therapeutic Agents
APR 01, 2021
Mapping the Wild Microbiome to Search for Therapeutic Agents
Many people think of bacteria as disgusting germs, but there are plenty of important bacterial species that provide us w ...
APR 06, 2021
Clinical & Molecular DX
Radioactive Antibody Illuminates Fungal Lung Infections
APR 06, 2021
Radioactive Antibody Illuminates Fungal Lung Infections
  An international team of scientists has pioneered a new procedure to diagnose lung disease caused by common mold. ...
APR 25, 2021
Cell & Molecular Biology
Natural Molecules Can Stop Antibodies From Neutralizing SARS-CoV-2
APR 25, 2021
Natural Molecules Can Stop Antibodies From Neutralizing SARS-CoV-2
When we're exposed to a pathogen, our immune system normally mounts a robust response against it. Antibodies are generat ...
MAY 27, 2021
Microbiology
Some Microbes May Protect the Gut From Chemo's Harmful Effects
MAY 27, 2021
Some Microbes May Protect the Gut From Chemo's Harmful Effects
The microbes in our gut can influence our physiology in many ways. Some gut microbes have a positive impact on human hea ...
JUN 16, 2021
Microbiology
DNA - It's What's for Dinner (For Some Bacteria)
JUN 16, 2021
DNA - It's What's for Dinner (For Some Bacteria)
There may be a trillion species of microbes on the planet, so clearly there's still a lot we don't know about these micr ...
Loading Comments...