JUL 17, 2016 05:49 AM PDT

New way to Engineer E.coli for Biofuel Production

WRITTEN BY: Carmen Leitch
Important fuels and chemicals have been made in genetically engineered strains of Escherichia coli by modifying this microbe’s fatty acid synthase (FAS), stimulating the bacterium to produce chemicals. E. coli has been altered to make chemicals used in the manufacture of detergents and lubricants as well as methyl ketones that have properties amenable to fuel production. However, up to this point, microbial production methods utilize tightly regulated enzymatic processes that can be inefficient for large scales. 
Alternative acyl-CoA production pathways / Credit: Metabolic Engineering:
Reporting in Metabolic Engineering, researchers with the U.S. Department of Energy's Joint BioEnergy Institute have developed an alternative FAS methodology that uses enzymes from other organisms to work with E. coli’s FAS, improving the microbe's capacity for making chemicals.

While fatty alcohols can be generated from plant, animal, and petroleum sources, using microbes for the synthesis of such chemicals is a much more sustainable method. Optimization of this system even more might lead to microbes with incredibly efficient conversion of biomass into fuels and other desired products.

FAS is strictly regulated in bacteria as a vital part of metabolism. The BioEnergy Institute scientists got around that regulation by engineering several recombinant FAS enzymes that can function in parallel with the normal, native E. coli FAS. They determined that the engineered FAS that was the most active in E. coli was FAS1A from Corynebacterium glutamicum - a tiny, non-motile, Gram-positive soil bacterium. The investigators leveraged that enzyme to produce oleochemicals including methyl ketones and fatty alcohols.
Corynebacterium glutamicum / Credit: Anthony D'Onofrio/www.biology101.org
C. glutamicum is well known as a workhorse in the fermentation industry. It’s been used for multi-million-ton scale production of glutamate and lysine for over 60 years. Relatively recently, research has focused on engineering it beyond simple amino acid manufacture.

It is believed that this work is the first example of in vivo function of recombinant, heterologous FAS in E. coli. The efficient use of FAS1 enzymes for biofuel and bioproduct production could potentially lead to the large scale conversion of biomass. In addition, the functional expression of such large enzyme complexes in E. coli will enable their study without needing to culture the native organisms.

The research team is currently investigating potential ways to make improvements to the system, and suggest several. Fatty alcohol production may be improved further by using E. coli strains that are engineered and selected for fatty alcohol tolerance. Another way might be to expand the repertoire of organisms from which FAS1 enzymes can be expressed, to vary genetic features, or to regulate of FAS1 expression dynamically, among other potential strategies the scientists are now exploring. 

Sources: Computational and Structural Biotechnology Journal, Metabolic Engineering, ScienceDaily via Department of Energy, Office of Science
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUL 16, 2018
Microbiology
JUL 16, 2018
Cyclospora to Blame for Several Foodborne Outbreaks
One outbreak of cyclosporiasis, which is caused by a parasite, has been traced back to salads sold at McDonald's, mostly in the Midwest....
JUL 19, 2018
Microbiology
JUL 19, 2018
Mom's Microbiome has a Big Impact on Kid's Autism Risk
For many years, scientists have been trying to learn more about the causes of autism....
JUL 23, 2018
Genetics & Genomics
JUL 23, 2018
Developing Self-fertilizing Plants
Plants of the future may not need to be fertilized; they might create their own nutrients. That could be a huge relief for the planet....
AUG 12, 2018
Microbiology
AUG 12, 2018
What Allows Some Microbes to Live in the Gut?
Microbes have to first pass through the harsh stomach environment to colonize the gastrointestinal tract....
AUG 31, 2018
Microbiology
AUG 31, 2018
An Ebola Outbreak in the Democratic Republic of Congo
In August, the World Health Organization declared that an Ebola outbreak was happening in the DRC....
OCT 01, 2018
Microbiology
OCT 01, 2018
A Virus That can Help Ensure Water is Clean
It's estimated that 780 million people worldwide don't have access to clean drinking water....
Loading Comments...