JUL 18, 2016 10:26 AM PDT

Genetic Modification Makes Virus Inactive

WRITTEN BY: Carmen Leitch
Researchers led by Olve Peersen, a professor in the Department of Biochemistry and Molecular Biology at Colorado State University have designed a genetic modification to one kind of coxsackievirus that attenuates its ability to replicate, mutate and cause disease. The investigators think this work may lead to a vaccine for this and other, similar viruses.
This drawing shows part of the atomic-level structure of coxsackievirus B3 polymerase, which is responsible for making copies of the virus genome. The researchers replaced the orange phenylalanine 364 that is found in two different positions, with the turquoise tryptophan that is larger and covers both positions without needing to move. This causes fewer mutations to be made and reduces the ability of the virus to replicate and cause disease. / Credit: Olve Peersen/Colorado State University
Publishing in The Journal of Biological Chemistry, in collaboration with Marco Vignuzzi at the Pasteur Institute in Paris, the scientists wanted to understand how single-stranded RNA viruses, a group that includes Zika, coxsackievirus, poliovirus, and dengue, are able to replicate.

The research team worked with the coxsackie B3 virus, which causes heart disease, and is closely related to the coxsackie A viruses, which cause hand, foot and mouth disease in children.
The RNA of coxsackieviruses encodes for only about a dozen proteins, one of which is the enzyme responsible for making new copies of the virus.

The new study builds on earlier work in which Peersen’s team discovered the exact chemical steps by which the virus genome is copied. During this process, an RNA polymerase makes three or four mistakes at random that allow the virus to keep evolving and surviving.

The researchers have now designed a way to "outsmart Mother Nature," Peersen said, by reengineering an important part of the polymerase so the virus cannot rapidly grow in a cell. The technology might pave the way to a so-called live-attenuated vaccine. Such vaccines use a weakened version of the virus that is purposely injected, triggering an immune response and the production of antibodies rather than cause disease.
A 1963 poster for the polio vaccine
Jonas Salk created the classic live-attenuated vaccine, for poliovirus. This process, however, isn't foolproof. Such a simple, small RNA genome allows viruses to make millions of copies in only days, and many of those copies contain errors or mutations, that slightly alter the viral RNA and any of them could restore its ability to cause illness. That's one explanation for why RNA viruses are so tough to eradicate, and why some vaccines can cause sickness in some recipients.

To reduce the chances of a vaccine-induced infection, the researchers altered one specific amino acid in the RNA polymerase from a phenylalanine to a tryptophan.

They first demonstrated that the tryptophan reduces mutations made by the polymerase, thus reducing its ability to cause disease. Second, if the virus tries to mutate the alteration the investigators have made, then it can no longer replicate, and the virus self-destructs. For this reason, the researchers have called their alteration a "genetic poison pill."

The study is essentially a proof-of-principle that could theoretically be extrapolated to other, similar RNA viruses, including those that have been linked to asthma and to foot-and-mouth disease and is a serious animal health concern in Europe and South America.

"We think it's going to work, but we have to show that it will," Peersen commented. "Trying to outsmart Mother Nature is pretty daunting, especially in these viruses. There are ways that things happen you never anticipate, and the virus finds a way to survive."
For more information about coxsackieviruses, check out the short video above.

Sources: The Journal of Biological Chemistry, AAAS/Eurekalert! via Colorado State University
 
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 17, 2019
Microbiology
NOV 17, 2019
How a Virus Can Help Treat Alcoholic Liver Disease
Viruses don't only infect humans, some, called bacteriophages or phages, infect bacteria. Image credit: Wikimedia Commons/AFADadcADSasd...
NOV 19, 2019
Microbiology
NOV 19, 2019
Ketogenic Diet Appears to Help Protect Against the Flu
The ketogenic diet forces the body to use stored fat as fuel instead of carbohydrates; the fat gets broken down into ketone bodies....
DEC 04, 2019
Clinical & Molecular DX
DEC 04, 2019
Genetic platform takes the guesswork out of catching infections
A physician is faced with 3 patients: an elderly person with a chronic cough, a child being wheeled out of surgery and a young mother with a high fever. Ho...
DEC 09, 2019
Genetics & Genomics
DEC 09, 2019
Researchers Rewire E. coli to Consume Carbon Dioxide
Milo et. al.   Researchers have genetically rewired the metabolism of Escherichia coli to be autotrophic, using formate (COOH) as a food sou...
DEC 28, 2019
Microbiology
DEC 28, 2019
A DNA Star That Can Detect Dengue Virus
Like origami paper, DNA molecules can be folded and arranged into complex three-dimensional structures....
FEB 14, 2020
Microbiology
FEB 14, 2020
CDC Director Expects Coronavirus to Find a "Foothold"
The novel coronavirus that emerged in Wuhan, Hubei Province, China has now infected over 64,000 people....
Loading Comments...