JUL 19, 2016 09:25 AM PDT

New cures for the common cold?

WRITTEN BY: Kerry Evans
The common cold virus grows best at cooler temperatures (like in your nose), just a few degrees below core body temperature. Why? Because various components of the immune system work better at warm temperatures. Recently, Yale researchers identified two new temperature-dependent host defense strategies that combat the common cold.

The same group already showed that interferon is secreted at 37oC (98.6oF, core body temperature) in response to the cold virus - rhinovirus (RV). However, when they inhibited the interferon response, viral replication still depended partially on temperature, suggesting that additional temperature-dependent antiviral activities were at play.
 
Researchers identified new host defenses against the common cold.
Ultimately, they showed that, at 37oC compared to 33oC, RV-infected cells underwent apoptosis earlier at 37oC than at the cooler temperature of 33oC; virus replication also decreased at 37oC compared to 33oC. In addition, they showed that the RNA-degrading enzyme RNAseL effectively decreased RV replication at 37oC versus 33oC.

To show that apoptosis helped curb viral replication at 37oC, they overexpressed the anti-apoptotic protein Bcl-2. RV replication increased in cells when Bcl-2 was overexpressed (to inhibit apoptosis).

Since dsRNAs accumulate during RV infection, they reasoned that the RNA-degrading enzyme RNAseL may be expressed at a higher level at 37oC than 33oC. This was indeed the case. The level of RNAseL mRNA was 2.2-fold higher at 37oC than 33oC. They used siRNA to knockdown RNAseL production in RV-infected cells; RNAseL knockdown increased RV replication at 37oC compared to when RNaseL was not overexpressed at this temperature..

What’s more, the group found that apoptosis and RNaseL are redundant mechanisms that cells use to control virus replication. To show this, they compared the effects of inhibiting apoptosis and RNAseL simultaneously or separately. In infected control cells, there was a 42-fold difference in peak viral titer at 33oC versus 37oC (indicating enhanced viral replication at 33oC). The difference was 61-fold or 13-fold if RNAseL or apoptosis were inhibited, respectively. However, if both RNAaseL and apoptosis were inhibited simultaneously, there was only a 5-fold difference in peak viral titer.

Overall, these findings reveal new ways to target the common cold, and this is especially important for people who have a weakened immune system or asthma, since the virus can exacerbate symptoms.

Sources: PNAS, Yale, Wikipedia
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
JUL 11, 2018
Microbiology
JUL 11, 2018
New Insight Into Bacterial Pathogenicity
Scientists have learned how some pathogenic bacteria stick to cells in the intestine, which gets their infection started....
AUG 06, 2018
Immunology
AUG 06, 2018
Maternal Dengue Immunity Protects Against Infant Zika Infection
Maternal Dengue immunity produces CD8+ T cells that protect against fetal Zika infection preventing zika-related malformations....
AUG 11, 2018
Microbiology
AUG 11, 2018
A Microbrewery can Help us Monitor Radiation Exposure
This wearable technology is very sensitive, and can be used by workers that are at risk of radiation exposure....
OCT 01, 2018
Cell & Molecular Biology
OCT 01, 2018
Revealing How Antibiotics Work Against Bacteria
In a first, researchers have directly observed an antibiotic in action as it disrupted the membrane of a bacterial cell....
OCT 04, 2018
Microbiology
OCT 04, 2018
Repeated Exposure to Artificial Sweeteners Harms gut Microbes
Artificial sweeteners have been used in foods for decades. While they seem safe for us, they may not be for bacteria....
OCT 09, 2018
Drug Discovery
OCT 09, 2018
'Copper Antibiotic Peptide' Effective in Eradicating Tuberculosis
The bacterium responsible for Tuberculosis has found a way to avoid antibiotics by hiding inside the macrophages which are the specific immune cells that a...
Loading Comments...