AUG 07, 2016 11:37 AM PDT

Inside bacteria, everything has its place

WRITTEN BY: Kerry Evans
Eukaryotic cells are nicely organized - all the important bits are housed in the nucleus or associated with other organelles. But, what about bacteria? How do they keep everything organized without organelles?

For many years, people assumed that bacteria were just little bags filled with genetic material, proteins, and other molecules. The other assumption was that that all of these components just sloshed about willy-nilly without any strict organizational scheme.
The insides of bacteria stay organized, even without organelles.
It turns out, however, that the innards of bacterial cells are surprisingly well-organized. A short review on the subject was recently authored by Sutharsan Govindarajan and Orna Amster-Choder in Current Opinion in Microbiology.

The cell poles of rod-shaped bacteria are one hub at which proteins accumulate and organize themselves. The poles are particularly important for localizing sensory systems. In E. coli, the receptors for chemotaxis and phosphotransferase (carbon uptake) systems, for example, organize themselves at the cell poles. The fact that both of these systems localize to the same part of the cells means it’s easy for them to communicate with each other - the two systems have to work together to make sure the bacteria find the right nutrients.

In addition to the poles, the protein MreB helps confer an organizational structure to the bacterial cell. MreB is an actin homolog that has been likened to a bacterial cytoskeletal protein, shuttling proteins to and fro.

MreB is attached to the cytoplasmic face of the inner membrane. One of MreB’s jobs in E. coli is to relocate penicllin binding proteins from one part of the cell to another so that they can remodel the cell wall. In Caulobacter crescentus, however, MreB localizes the protein PilT to the cell poles.

Finally, the authors discuss how RNA is organized in the bacterial cell. These same authors showed that, in E. coli, some mRNAs localized to the same region of the cell as their protein products (a process that was shown to be independent of translation). Specifically, mRNAs coding for membrane proteins accumulated around the cell’s circumference, those coding for cytoplasmic proteins assembled in a helical pattern, and mRNAs for polar proteins assembled at (you guessed it), the poles.

Many questions remain. For example, how do proteins know to go to the cell pole? How many other proteins does MreB interact with? And finally, how do specific mRNAs know where to localize in the cell?

Source: Current Opinion in Microbiology
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
AUG 11, 2020
Neuroscience
Gastrointestinal Issues Linked to Behavioral Problems in Children
AUG 11, 2020
Gastrointestinal Issues Linked to Behavioral Problems in Children
Researchers from the University of California, Davis, have found that common gastrointestinal (GI) symptoms like diarrhe ...
AUG 14, 2020
Cell & Molecular Biology
A Proposal: COVID-19 is so Deadly Because it Absorbs microRNAs
AUG 14, 2020
A Proposal: COVID-19 is so Deadly Because it Absorbs microRNAs
There are several coronaviruses that we know about, and they cause a wide range of illnesses. Some, like SARS-CoV-2, are ...
OCT 18, 2020
Cell & Molecular Biology
Small RNA is Connected to Bacterial Pathogenicity
OCT 18, 2020
Small RNA is Connected to Bacterial Pathogenicity
It's thought that as much as half of the global population carries a bacterium called Helicobacter pylori in their stoma ...
OCT 29, 2020
Microbiology
Metabolomics and the Microbiome
OCT 29, 2020
Metabolomics and the Microbiome
The average person contains large variations in bacteria from the mouth, the skin, sweat, and in the stomach and intesti ...
OCT 29, 2020
Cell & Molecular Biology
How Does the Immune System Handle the Microbiome?
OCT 29, 2020
How Does the Immune System Handle the Microbiome?
The human body plays host to trillions of microbes, and many of them live in our gastrointestinal tract; these microorga ...
NOV 09, 2020
Microbiology
Fighting COVID-19 with Help From Llamas
NOV 09, 2020
Fighting COVID-19 with Help From Llamas
Camelids, which include llamas, alpacas and camels have immune systems that generate two kinds of antibodies when confro ...
Loading Comments...