AUG 31, 2016 09:21 AM PDT

Small Molecules Could be a way to Stop Ebola

WRITTEN BY: Carmen Leitch
New research published in Bioorganic & Medicinal Chemistry Letters demonstrates the ability of small molecules to block a protein that aids the spread of Ebola. While still in the early phase of development, these compounds could one day be used during an outbreak to halt the dissemination of the disease as well as to treat infected patients.
 


The devastating outbreak of Ebola virus disease (EVD) between 2013 and 2016 in West Africa caused the death of over 11,000 people. A clip from the New York Times, above, is a report about the crisis from September 2014. Attention was drawn once again to the virus, and efforts to develop resources to combat it began with urgency. While there are vaccines in development, they are protective and only work to keep a person from getting Ebola; as such they leave people vulnerable to other hemorraghic viruses.

These new compounds would not be dangerous to host cells. Instead it would work on the replication machinery of the virus.

Viruses take over the cellular machinery of the host for its own purposes. The host cells replicate the virus, and viral particles are subsequently released from the cell which leads to the infection of more cells.

The compounds target the association of the virus with the host cells, and prevent the newly produced Ebola viruses from exiting the cell; all that happens without toxicity to the host.

"Positive results showing potent viral inhibition without toxicity to normal healthy cells may lead to a paradigm shift in the search for better antiviral drugs,” explained Dr. Harty of the University of Pennsylvania School of Veterinary Medicine, one co-author of the study. “Importantly, as these virus-host interactions represent a common mechanism used by a range of RNA viruses, we predict that this virus-host interaction may represent an Achilles' heel in the life cycle of RNA viruses."

The mechanism that the virus uses to escape cells is similar to many other RNA viruses such as Lassa fever and Marburg virus. The model of the virus-host interactions that was used is between the VP40 protein of Ebola and NEDD4, a host protein. 4.8 million compounds were screened in silico to identify one that prevented VP40-NEDD4 interactions, thus preventing virus escape.
The Ebola virus, from Wikipedia Commons
 
 Harty’s team collaborated with Dr. Jay Wrobel of Fox Chase Chemical Diversity Center to analyze some commercial compounds. That led to the identification of even more potent molecules. Taking it a step further, new compounds were made to optimize efficacy. Thus, a new class of molecule targeting filovirus egress was created.

"We postulate that emergency administration of such an antiviral therapeutics during an outbreak would inhibit virus dissemination and spread in infected individuals, thus slowing disease progression and allowing the immune system more time to mount a robust response to effectively combat and clear the infection,” explained Wrobel.

The team hopes to continue work on finding the best molecule, which would then be tested on viruses. If that shows success, the testing would move to animal models before clinical trials. "This work is exciting to me since it may translate our basic science work into a potential product or therapeutic," Dr. Harty concluded.

Sources: AAAS/Eurekalert! via Elsevier, Bioorganic & Medicinal Chemistry Letters
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 26, 2018
Immunology
SEP 26, 2018
What Superbug? A New Antibiotic Contender
Scientists from a biotechnology corporation, Genentech, have altered a protein that blocks a signaling pathway in gram-negative bacteria to engineer a new antibiotic, currently called G0775,...
OCT 04, 2018
Microbiology
OCT 04, 2018
Repeated Exposure to Artificial Sweeteners Harms gut Microbes
Artificial sweeteners have been used in foods for decades. While they seem safe for us, they may not be for bacteria....
OCT 11, 2018
Cell & Molecular Biology
OCT 11, 2018
Revealing a 'Double Agent' in the Immune System
Researchers want to enhance our natural defenses to fight a variety of health problems more effectively....
OCT 19, 2018
Videos
OCT 19, 2018
Latin American Coffee Harvests Threatened by Fungus
A fungus called hemileia vastatrix causes a serious plant disease called coffee leaf rust....
DEC 08, 2018
Cardiology
DEC 08, 2018
Adaptations Of The Heart To Chronic Exercise
We have all heard that exercise is good for us, particularly for the heart, but many don’t understand precisely how regular, long-term activity affec...
DEC 09, 2018
Microbiology
DEC 09, 2018
Gut Microbiomes Vary Among Ethnicities
Many products that purport to change the microbiome have entered the market. But first we have to know what a healthy microbiome looks like....
Loading Comments...