AUG 31, 2016 11:46 AM PDT

Captivity changes the microbiome

WRITTEN BY: Kerry Evans
Researchers from the University of Minnesota uncovered startling differences between the gut microbiomes of captive and wild primates. Notably, the gut microbiomes of captive nonhuman primates resembled those of humans eating a typical Western diet.
A mantled howler monkey
The Western diet is typically characterized as being high in fat, animal protein, and sugar. At the same time, it is low in plant and vegetable fiber. What’s more, this diet is linked with dysbiosis - a fancy word for microbial imbalance in the gut. Dysbiosis actually comes in three types: 1) the loss of beneficial microbes, 2) the expansion of potentially harmful microbes, or 3) an overall loss of microbial diversity.

Since captive nonhuman primates typically consume less dietary fiber, the researchers, led by study author Dan Knights, wanted to know what effect this had on their gut microbiomes.

The group studied two species of monkey - the red-shanked douc and the mantled howler monkey. First, they wanted to know whether captivity altered the primate microbiome. They sequenced the 16S rRNA gene from fecal samples from captive or wild doucs and howler monkeys. What they found was surprising. Although the microbiomes of the wild doucs and howler monkeys differed greatly, they became very similar when housed in captivity (regardless of where they were housed geographically).

Next, they wanted to know what type of dysbiosis they were dealing with. After performing some bioinformatics techniques (that I don’t understand), they found that microbial diversity decreased in the captive primates - species of Bacteroides and Prevotella became dominant. Interestingly, diversity decreased as the level of captivity increased - primates living under semi-wild conditions exhibited microbial diversity somewhere between wild and captive animals.

Finally, they showed that primate captivity parallels Westernization in humans. They sampled the microbiomes of humans from Westernized (the US) and non-Westernized regions (Malawi and Venezuela). What they found was strikingly similar to their nonhuman primate data - humans living in a modernized society, eating a Westernized diet, had less diverse microbiomes than humans living in non-Westernized regions. What’s more, just as in captive nonhuman primates, the microbiomes of Westernized humans consisted mostly of Bacteroides and Prevotella.

So, is this change in diversity bad for humans and nonhuman primates? According to Knights, “we don't know for certain that these new modern human microbes are bad, but on the other hand many studies are now showing that we evolved together with our resident microbes. If that is the case, then it is likely not beneficial to swap them out for a totally different set.”
 


Sources: PNAS, Science Daily
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
AUG 19, 2020
Cell & Molecular Biology
Mild COVID-19 Cases Induce an Immune Cell Response
AUG 19, 2020
Mild COVID-19 Cases Induce an Immune Cell Response
As the pandemic virus, SARS-CoV-2 continues to cause tens of thousands of new cases of COVID-19 every day in the United ...
SEP 06, 2020
Microbiology
Small Changes in Vaccine Molecules Could Make Them More Effective
SEP 06, 2020
Small Changes in Vaccine Molecules Could Make Them More Effective
Effective vaccines have to trigger an immune response, which is intended to create an immune 'memory' of a specific infe ...
OCT 11, 2020
Microbiology
Getting Closer to a Vaccine for Flaviviruses
OCT 11, 2020
Getting Closer to a Vaccine for Flaviviruses
Flaviviruses like dengue, West Nile, Zika, Japanese Encephalitis, and yellow fever infect over 400 million people a year ...
NOV 12, 2020
Immunology
The Enzyme That Keeps Viruses In Stealth Mode
NOV 12, 2020
The Enzyme That Keeps Viruses In Stealth Mode
Some viral infections just don’t go away. The hepatitis C virus, for instance, can result in life-long chronic inf ...
NOV 15, 2020
Microbiology
Monitoring a Virus in Real-Time as it Infects a Cell
NOV 15, 2020
Monitoring a Virus in Real-Time as it Infects a Cell
Hubrecht Institute researchers observe a virus as it invades a cell and competes with the host for control of the host c ...
DEC 01, 2020
Microbiology
Low Vitamin D Levels are Linked to a Lack of Gut Microbiome Diversity
DEC 01, 2020
Low Vitamin D Levels are Linked to a Lack of Gut Microbiome Diversity
The link between the microbes we carry in our gastrointestinal tract and our health has become clear, and now researcher ...
Loading Comments...