SEP 04, 2016 04:46 AM PDT

Targeting Bacterial Flagella in the Fight Against Infections

WRITTEN BY: Carmen Leitch
Most bacteria have flagella; they are threadlike appendages extending from the surface of many microbes. They help move the organism around, a function called motility, in a rotating motion. Enabling a bacterium to get around seems to be pretty critical to pathogenicity; there is an association between infection and motility. A team of researchers led by Hideyuki Matsunami of the Trans-Membrane Trafficking Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) wanted to investigate the flagella formation in the hopes of shedding light on new disruptions of bacterial infection.
An artistic rendering of bacteria with three flagella / Credit: OIST

"When you have a bacterial infection, the first action is to take antibiotics," explained Fadel Samatey, a Professor who leads the Trans-Membrane Trafficking Unit and is one of the authors of the study. "The goal of antibiotics is to kill any bacterium. But this goal has side effects, because not all the bacteria that live in our body are harmful. So, what we are thinking about is how we can disrupt infections, but without just killing any bacterium. One way to do that would be to disrupt the bacteria's motility, which means to disrupt the flagella."

The scientists wanted to interfere with the development of the flagella to disrupt its function. To do so, they targeted the proteins that are crucial to the flagella. One protein is vital to the rotation of the flagella, another protein gives the flagella access through the bacterial membrane, putting it on the outside of the microbe. All proteins that compose the flagella are created inside the organism, then shuttled through a channel that extends through the membrane and into the flagella, which allows the flagella to grow from the tip instead of the bottom.

"We worked on a protein that is key in the early stage of the flagella's development. This protein allows the flagella to grow outside the bacteria body," Samatey explained. "We have discovered that this protein exists in two different forms, in which the basic chemistry of the protein is the same, but there is a different geometrical arrangement of the protein's components. If the protein is forced in its 'narrower' geometrical structure, it is impossible for the flagella to grow outside the bacterium's body, as the channels that would allow the flagella in exit the bacterium's body do not form. The flagella are trapped inside and do not grow."

The protein has been modified outside the bacteria and reinserted at this point. But in the future, researchers hope to find another way to achieve that result, such as by modifying the protein’s geometry. A molecule in a pill could be a way to do that, and thus disrupt motility in bacteria to help combat infections. 
 


The video above shows the incredible flagellum in detail.

SouSources: AAAS/Eurekalert! via OIST, Scientific Reports

 
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 12, 2018
Microbiology
AUG 12, 2018
What Allows Some Microbes to Live in the Gut?
Microbes have to first pass through the harsh stomach environment to colonize the gastrointestinal tract....
AUG 26, 2018
Videos
AUG 26, 2018
All About Extremophiles
Our planet hosts some very special microbes that live in some crazy places; they are called extremophiles....
SEP 09, 2018
Videos
SEP 09, 2018
Black Hairy Tongue - A Shocking Antibiotic Side Effect
A 55-year-old woman experienced a rare side effect of antibiotics while being treated for an infection....
SEP 15, 2018
Microbiology
SEP 15, 2018
Researchers Surprised to Find Bacteria That Make Electricity in the Human Gut
It seems that many microbes, including strains in the human gut that are potentially pathogenic, can generate electricity....
OCT 11, 2018
Cell & Molecular Biology
OCT 11, 2018
Revealing a 'Double Agent' in the Immune System
Researchers want to enhance our natural defenses to fight a variety of health problems more effectively....
OCT 19, 2018
Videos
OCT 19, 2018
Latin American Coffee Harvests Threatened by Fungus
A fungus called hemileia vastatrix causes a serious plant disease called coffee leaf rust....
Loading Comments...