SEP 12, 2016 11:06 AM PDT

Microchip Can Precisely Measure Growth of Single Cells in a Group

WRITTEN BY: Carmen Leitch
Researchers at MIT have created a new device that allows for the measurement of the growth rate of many individual cells at the same time. Publishing in Nature Biotechnology, the investigators have improved upon an existing device, the suspended microchannel resonator (SMR), which is a microfluidic device that measures individual cell mass as the cells migrate through small channels. The senior author of new work is MIT professor Scott Manalis, and he has been working on refining these devices for almost a decade. The last improvement increases throughput while retaining accuracy.
 

The SMR was first created in 2007, and since then has been modified for a variety of uses, such as the one seen in the video above, tracking the growth of a single cell over time. Other innovations include measuring the density of cells, seen in the video below, as well as weighing nanovesicles secreted by cells and measuring short-term growth rates in cells subjected to variable nutrient levels.
 

The latest device can be used to determine the impacts of antibiotics or antimicrobial compounds on bacteria as well as isolating variations in growth of individual cells within a larger population. That observation could translate into clinical applications; such as if slower growing bacteria indicate resistance to antibiotics and cause recurrent infections.

“The device provides new insights into how cells grow and respond to drugs,” explained Manalis, the Andrew (1956) and Erna Viterbi Professor in the MIT departments of Biological Engineering and Mechanical Engineering as well as a member of the Koch Institute for Integrative Cancer Research. Manalis continues, “In some cases, having a rapid test for selecting an antibiotic can make an important difference in the survival of a patient.”

The SMR devices are based on a design in which a silicon sensor, etched with a microchannel, vibrates within a vacuum. When a cell enters the channel, the vibration frequency of the sensor changes, and that change can be used to determine the weight of the cell. A growth rate can thus be measured by passing a cell through that microchannel over and over as the mass changes were recorded. However, the sensitivity was not perfect.

The latest technology was designed to control an array of 10 to 12 sensors, each weighing the cell as it passes by, and giving the cell enough time to grow or shrink before reaching the next sensor.
 
A schematic of the SMR is shown here / Credit: MIT

In their research, the investigators measured roughly 60 mammalian cells and 150 bacteria per hour, while single SMRs can only a few cells in that time. “Being able to rapidly measure the full distribution of growth rates shows us both how typical cells are behaving, an­­d also lets us detect outliers — which was previously very difficult with limited throughput or precision,” explained Nathan Cermak, a recent PhD graduate from MIT’s Computational and Systems Biology Program.

“We can reliably resolve changes of less than one-tenth of a percent of a cancer cell’s mass in about 20 minutes. This precision is proving to be essential for many of the clinical applications that we’re pursuing,” added Selim Olcum, a research scientist in the Koch Institute at MIT.

Currently, the scientists are collaborating with researchers at the Dana Farber Cancer Institute to determine if the device could be used to evaluate how patients might respond to therapy by measuring the weight of tumor cells after anticancer drug treatment.
 
Source: MIT News, Nature Biotechnology
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 06, 2020
Microbiology
APR 06, 2020
Sensor Can Quickly Detect Bacterial Contamination in Water
Bacterial runoff is a serious threat to our waterways and oceans; pathogenic microbes are known to contaminate stormwate ...
APR 19, 2020
Microbiology
APR 19, 2020
SARS-CoV-2 Aerosols May Travel up to 13 Feet
SARS-CoV-2 has now caused tens of thousands of deaths worldwide, and hundreds of thousands of infections.
APR 22, 2020
Immunology
APR 22, 2020
Scientists Engineer Custom Antiviral Receptors to Fight COVID-19
The best offense may be a good defense in the fight against COVID-19. Researchers from the Duke-NUS Medical School are e ...
MAY 04, 2020
Microbiology
MAY 04, 2020
How Soap and Hand Sanitizer Kill Viruses
The COVID-19 pandemic has spread around the world and there is still no available treatment or a vaccine. Prevention rem ...
MAY 05, 2020
Microbiology
MAY 05, 2020
How a Microbe May Help Stop the Spread of Malaria
Scientists have discovered a bacterium that lives in mosquitoes around Lake Victoria, and appears to block malaria.
MAY 25, 2020
Microbiology
MAY 25, 2020
The Symbiotic Bacteria That Stow Away in Ship-Destroying Clams
Shipworms are known as the 'termites of the sea.' They are not actually worms; these infamous mollusks that have brought ...
Loading Comments...