SEP 23, 2016 09:36 AM PDT

Magnetic bacteria target tumors

WRITTEN BY: Kerry Evans
4 6 535
Holy magnetic bacteria, Batman! Researchers at the Polytechnique Montreal NanoRobotics Laboratory want to use magnetic bacteria to traffic drugs to tumors.

First of all, magnetic bacteria? Yes, they’re a real thing. Magnetococcus marinus is a bacterium that lives deep down in the ocean where oxygen is scarce. Magnetococcus contains a magnetosome - a structure that contains between 15 and 20 magnetite crystals. These magnetic crystals act like a tiny compass that orients the cell with the Earth’s magnetic field. Odd thing is, these magnets also help the bacteria find environments with very little oxygen (that’s a topic for another time).
Magnetococcus contains magnetosomes.
So, what do magnetic bacteria that like hypoxic environments have to do with cancer? One problem with systemic cancer therapy is that it’s systemic. If a cancer drug isn’t targeted specifically to the cancer, healthy cells also suffer (and that’s not good). To solve that, researchers are developing so-called nanocarriers to deliver drugs specifically to tumors. The problem is, however, that the nanocarriers have trouble making it to the inside of a tumor. Incidentally, the inside of a tumor is usually hypoxic. Magnetic bacteria to the rescue!

The idea is that a magnetic field can be generated to direct the bacteria to the tumor. Then, it’s up to the bacteria to find their way into the hypoxic zone of the tumor. I should also mention - vesicles containing cancer drugs would be attached to the bacteria.

According to study author Sylvain Martel, “When they get inside the tumor, we switch off the magnetic field and the bacteria automatically rely on [their] oxygen sensors to seek out the hypoxic areas. We constrain them to the tumor and then let nature do the rest.”

As proof-of-concept, Martel and colleagues tested this system in mice afflicted with human colorectal tumors. First, they wanted to know whether the bacteria could traffic to and penetrate a tumor. They injected mice with live bacteria, dead bacteria, or non-magnetic beads. Very few dead bacteria or non-magnetic beads made their way into the tumors, but a significant number of live bacteria did.

Next, they attached drug-loaded vesicles to the bacteria (around 70 vesicles per bacterium) to see how this would affect their movement into the tumors. They found that roughly 55% of the vesicle-loaded bacteria penetrated the tumors. That’s huge, considering only around 2% of nanocarriers are delivered to tumors!

But wait, are you wondering if it’s a good idea to inject live bacteria into live people? Well, Magnetococcus is not a pathogen, and the researchers insist that they only survive for about 30 minutes after injection.
 

Source: National Institute of Biomedical Imaging and Bioengineering, Wikipedia
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
MAY 21, 2018
Microbiology
MAY 21, 2018
Common Antibacterial Chemical may Help Fight Lung Infections
New research has found when triclosan is used with another FDA-approved drug, it can help fight deadly illness.
MAY 22, 2018
Cancer
MAY 22, 2018
Breakthrough Analysis Outlines Conceivable Cause of Childhood ALL
A team from the Institute of Cancer Research has published a comprehensive literature review and outlined a breakthrough in the causative theory of childhood ALL development.
JUN 12, 2018
Genetics & Genomics
JUN 12, 2018
Giant Viruses can Make Their own Genes
Researchers have discovered something incredible about giant viruses.
JUN 23, 2018
Microbiology
JUN 23, 2018
In a First, Keystone Virus Sickens a Person
A teenage boy in North Central Florida presented with symptoms that defied diagnosis.
JUL 21, 2018
Cell & Molecular Biology
JUL 21, 2018
Revving the Nanomotor
Many people have never heard of cilia, but these tiny appendages are an essential part of the cell.
AUG 02, 2018
Genetics & Genomics
AUG 02, 2018
The Genetic Hotspots That Can Lead to Cancer
In some of our body's tissues, cells have to replicate many times. That introduces a chance for new genetic errors every time.
Loading Comments...