NOV 11, 2016 06:28 PM PST

New Players Revealed in Tularemia Virulence

WRITTEN BY: Carmen Leitch
According to the Centers for Disease Control (CDC), the bacterium Francisella tularensis is highly infectious, and can sicken a variety of animals including rabbits, rodents and humans. It is transmitted by deer tick but can also spread in other ways, including through the handling of infected animal tissue or contact with contaminated soil and water. Infection with the pathogen results in the disease tularemia, also known as rabbit fever. It is treatable with antibiotics but has caused fatalities. In a report published in Cell Host & Microbe, scientists reveal more about Francisella. Learn more about the disease in the following video from the National Institute of Allergy and Infectious Diseases.
 

 
"Francisella tularensis is very pathogenic. Disease can occur even when fewer than 10 bacteria get introduced into the lungs. We don't study the human pathogenic bacterium in our lab, but use a less pathogenic surrogate called Francisella novicida," explained Dr. Aria Eshraghi, a postdoctoral fellow in the Department of Microbiology at the University of Washington School of Medicine.
 
Although the disease has been studied extensively, very little is known about it. Because of its severity and pathogenicity, the CDC has classified it as a bioterrorism agent. A scientist who participated in this work, Dr. Brook Peterson, noted that the CDC tracks tularemia cases in the United States.
 
There is a distinctive feature of the genome of the bacterium that has been termed the Francisella Pathogenicity Island. The genes in this region encode for bacterial toxins as well as the delivery system that ferries those toxins into a host, resulting in illness.
 
It had been thought that this area contained all of the toxin genes; the researchers found another set of genes that code for proteins that enhance the infectiousness of the toxins. Some characteristics of these proteins are common to other pathogens, such as the bacterium responsible for Legionnaires’ disease. The role of the proteins seems to be the promotion of Francisella growth inside a macrophage, a cell of the immune system, which functions to ingest and destroy invading pathogens.
 
"Francisella novicida must actively commandeer its host to avoid cellular defenses," noted the investigators.
 
 negative stain electron micrograph of a dense culture of Francisella bacteria. / Credit: Alexandra Walls and Aria Eshraghi
 
Improved technologies enabled the scientists to detect the new proteins that aid in Francisella toxicity. Mass spectrometry with increased sensitivity enabled the detection and quantification of molecules, electron microscopy and fluorescence confocal microscopy gave the researchers a view of the various parts of the toxin transport machinery.
 
"We have discovered some of Francisella's toxins, but still to be determined is how they act on the cells the bacteria infect. That knowledge will be a big advance in our understanding of tularemia," concluded the senior author of the study, Dr. Joseph Mougous, an Associate Professor of Microbiology at the UW School of Medicine.
 
Sources: CDC, AAAS/Eurekalert! via UW School of Medicine, Cell Host & Microbe
 
About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUL 16, 2018
Microbiology
JUL 16, 2018
Cyclospora to Blame for Several Foodborne Outbreaks
One outbreak of cyclosporiasis, which is caused by a parasite, has been traced back to salads sold at McDonald's, mostly in the Midwest....
JUL 19, 2018
Microbiology
JUL 19, 2018
Mom's Microbiome has a Big Impact on Kid's Autism Risk
For many years, scientists have been trying to learn more about the causes of autism....
AUG 13, 2018
Immunology
AUG 13, 2018
Silent Viruses Impact Microbe and Immune Cell Populations
Subclinical infections may alter the immune system and gut microbiota in the human host impacting how we respond to environmental stimuli like vaccines....
SEP 05, 2018
Microbiology
SEP 05, 2018
Decreasing Nitrogen Levels Shown to Reduce Algal Blooms
Nitrogen runoff has been linked to lake health for many years; it was unclear, however, whether reducing nitrogen runoff would reduce algal blooms....
SEP 13, 2018
Microbiology
SEP 13, 2018
Emergency Declared: Cholera Outbreak in Zimbabwe
The waterborne bacterium Vibrio cholerae has been spreading cholera in contaminated water since the 1800's....
SEP 26, 2018
Microbiology
SEP 26, 2018
Improving Gut Health - with Viruses
Viruses don't only infect animals. Some, called bacteriophages, can infect bacteria....
Loading Comments...