DEC 03, 2016 2:16 PM PST

Early Environment and Genes Shape the gut Microbiome

WRITTEN BY: Carmen Leitch
 Animals live in symbiosis with microorganisms, and that concept was established as early as the nineteenth century. Because of advances in genomic technology, scientists have been able to learn a lot more about the species of microbes that reside in our guts and how they are relevant to our health. Evidence has built that the community of microbes in our gastrointestinal tract, our gut microbiome, is of critical importance to our health. Researchers have sought to understand how the microbiome is established, and recently learned more about it.
 
The nuclei of mouse epithelial cells (red) and the microbes (green) in the mouse intestine are visible./ Credit: Photo courtesy of PNNL
 
Reporting in Nature Microbiology, a research team from the Department of Energy's Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (Berkeley Lab) has linked certain genes in their model, a genetically diverse mouse, to the types of microbes that are in the gut and how much of them there are.
 
"We are starting to tease out the importance of different variables, like diet, genetics and the environment, on microbes in the gut," said the corresponding author of the study, PNNL's Janet Jansson. "It turns out that early life history and genetics both play a role."
 
By analyzing over 50,000 small genetic variations, called SNPs, in mice, around 100 were identified that have an effect on the gut microbe population. Those variations were present in a variety of genes, which also have a high degree of similarity to genes that cause human diseases like arthritis, diabetes, colon cancer, Crohn's and celiac disease when they are dysfunctional.
 
There was one bacterium in particular that was influenced by the genes of its mouse host, Lactobacillales, and was also linked to higher levels of T-helper cells, an important type of immune cell. That result suggests that the microbiome is related to the immune response, and microbes in the gut could be influencing the immune system and affecting vulnerability to disease.
 
"We know the microbiome likely plays an important role in fighting infections," said the first author of the work, Antoine Snijders of the Berkeley Lab. "We found that the level of T-helper cells in the blood of mice is well explained by the level of Lactobacillales in the gut. It's the same family of bacteria found in yogurt and very often used as a probiotic."
 
Berkeley Lab staff scientist Jian-Hua Mao looks on as research scientist Antoine Snijders handles one of the mice used in the study . / Credit: Credit: Marilyn Chung/Berkeley Lab
 
For this study, sets of mice with a diverse genetic background were used in order to mimic a human population. They were housed in different environments for their first four weeks of life. Fecal samples from the mice were used to assay their gut microbiomes, and they were then moved to another housing environment.
 
Not only did the microbiome of the mice obtain a microbial signature based upon where they were initially housed, that signature was retained. Intriguingly, the signature was even carried into the next generation of mice.
 
Mice raised in environments with different relative abundances of diverse microbes (left and right) have a correspondingly diverse gut microbiome. These signature characteristics remained even when the mice were moved to a new facility, and they persisted into the next generation. / Credit: Zosia Rostomian/Berkeley Lab
 
"The early life environment is very important for the formation of an individual's microbiome," said Jian-Hua Mao, the corresponding author from Berkeley Lab. "The first dose of microbes one gets comes from the mom, and that remains a strong influence for a lifetime and even beyond."
 
This work demonstrated that both genes and environment shaped the microbiomes of the mice. The researchers showed that genes that correlated to microorganism presence and level were similar to human disease genes. They also found that changes in diet can determine the role of a microbe inside the gut.
 
"Our findings could have some exciting implications for people's health," said Jansson. "In the future, perhaps people could have designer diets, optimized according to their genes and their microbiome, to digest foods more effectively or to modulate their susceptibility to disease."
 

 
If you’d like to know more about the gut microbiome and how it relates to disease, check out the video above from the American Society for Microbiology.
 
Sources: AAAS/Eurekalert! via Department of Energy/Pacific Northwest National Laboratory, Nature Microbiology
 
About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 25, 2021
Immunology
The Immune System Impairs Antibiotic Effectiveness
MAR 25, 2021
The Immune System Impairs Antibiotic Effectiveness
Nitric oxide, a molecule produced by the immune system, can negatively impact antibiotics’ effectiveness, says a s ...
MAR 23, 2021
Microbiology
Pregnant Moms Easily Pass On COVID-19 Antibodies Through Placenta
MAR 23, 2021
Pregnant Moms Easily Pass On COVID-19 Antibodies Through Placenta
Recent work has shown that SARS-CoV-2 antibodies that are carried by a pregnant woman can cross the placenta and reach t ...
APR 04, 2021
Microbiology
A Nanoparticle-Based Universal Flu Vaccine Moves Closer to Use
APR 04, 2021
A Nanoparticle-Based Universal Flu Vaccine Moves Closer to Use
There are many different influenza viruses, which cause from 290,000 to 650,000 deaths every year. That range depends on ...
APR 25, 2021
Microbiology
Plant-Eating Microbes Expand the Tree of Life
APR 25, 2021
Plant-Eating Microbes Expand the Tree of Life
After microbes called archaea were discovered in the 1970s, a branch was added to the tree of life after some debate, wh ...
APR 29, 2021
Immunology
A Week for World Immunization
APR 29, 2021
A Week for World Immunization
The World Health Organization (WHO) is calling our attention to World Immunization Week, which comes in the last week of ...
MAY 14, 2021
Coronavirus
How COVID-19 Patients Lose Their Sense of Smell
MAY 14, 2021
How COVID-19 Patients Lose Their Sense of Smell
The loss of the sense of smell is a well-known symptom of COVID-19, and was common even in people that did not have many ...
Loading Comments...