JAN 29, 2017 8:10 AM PST

Towards an Understanding of Dinoflagellate Evolution

WRITTEN BY: Carmen Leitch

After four years, research collaboration has revealed details about the evolution of dinoflagellates, along with new details on the physiology of these organisms commonly known as plankton. Genetic sequencing techniques were used to study this organism, which has been around since the time of the dinosaurs and has undergone millions of years of evolution. The findings have been reported in the Proceedings of the National Academy of Sciences.

Dinoflagellates, seen in various forms in the video above, are all over our environment. They have produced fossil fuels and produce oxygen by using sunlight. They create the effects of dangerous red tides and gorgeous bioluminescent bays. These incredible organisms have complex genomes – one dinoflagellate has from 12 to 400 chromosomes compared to the 23 pairs in humans.

"Mapping the evolution of dinoflagellates has never been done--successfully and on such a scale--before," said Tsvetan Bachvaroff, a molecular geneticist at the University of Maryland Center for Environmental Science. He grows two kinds of parasitic dinoflagellates at the Institute of Marine and Environmental Technology in Baltimore, and donated samples of those organisms for use in this research. "Now we understand how they are related, what they look like," he said. "It's their genomic flexibility that has given them the advantage to evolve."

Dinoflagellates / Credit: UMCES

"This work provides important new insights into the evolution of dinoflagellates and we are delighted that Dr. Bachvaroff was able to contribute significantly to this study," said Russell Hill, the Director of the Institute of Marine and Environmental Technology.

Critical chemical compounds required by the cells of plants and algae are made in plastids, small organelles. The researchers determined that dinoflagellates that are not reliant on sunlight, or photosynthesis, for their energy needs have plastids that perform critical metabolic functions; one such function could be the evolutionary origin of dinoflagellate luminescence.

"The prediction that a big chunk of dinoflagellate diversity including all free-living heterotrophs have retained remnant plastids illustrates how little known they are and could help us better understand their roles in the oceans and other areas," explained the lead author of the study, Jan Janouskovec of the University College of London.

This research could enrich our knowledge of the bioluminescence phenomenon, it may help control harmful red tides, and it may be used as a tool in resource exploration since fossilized dinoflagellates could help pinpoint oil-rich locations.

"They violate the fundamental rules of Darwinian evolution. They tend to borrow genes from different places," Bachvaroff said. "The ocean is like this giant parts catalog where from which you can grab genes and use them. Organisms that can acquire genes from their environment have a selective advantage."

Watch the following video if you’d like to learn more about dinoflagellates.

 

Sources: AAAS/Eurekalert! via University of Maryland Center for Environmental Science, PNAS

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 25, 2021
Microbiology
Bacteria Easily Share Mobile Genetic Elements That Confer Resistance to Phages
OCT 25, 2021
Bacteria Easily Share Mobile Genetic Elements That Confer Resistance to Phages
Microbes are engaged in a never-ending battle, and they have ways of attacking each other as well as defense mechanisms.
OCT 26, 2021
Microbiology
A Strategy to Improve the Efficacy of Antibiotics
OCT 26, 2021
A Strategy to Improve the Efficacy of Antibiotics
For many years, scientists and experts have warned about a building crisis - antibiotics are becoming less reliable, bac ...
NOV 01, 2021
Cancer
Gut Microbiota Promotes Resistance to Prostate Cancer Therapy
NOV 01, 2021
Gut Microbiota Promotes Resistance to Prostate Cancer Therapy
  The American Cancer Society estimates that nearly 250,000 men in the United States will be diagnosed with prostat ...
NOV 18, 2021
Cannabis Sciences
Could Cannabis-Based Compounds Be the Next New Class of Antibiotics?
NOV 18, 2021
Could Cannabis-Based Compounds Be the Next New Class of Antibiotics?
According to the Centers for Disease Prevention and Control (CDC), antibiotic-resistant bacterial or fungal strains infe ...
DEC 29, 2021
Microbiology
H5N1 Avian Flu ID'ed in a Variety of Bird Populations Worldwide
DEC 29, 2021
H5N1 Avian Flu ID'ed in a Variety of Bird Populations Worldwide
There are many types of influenza virus, which are classified based on the proteins expressed on their surfaces. The H5N ...
JAN 05, 2022
Microbiology
The Interaction of Viral & Host Genes Promotes Evolution in Both Species
JAN 05, 2022
The Interaction of Viral & Host Genes Promotes Evolution in Both Species
Microbes are known for their ability to evolve. Many types of microbes can interact with one another, and easily exchang ...
Loading Comments...